Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy...The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.展开更多
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将...目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。展开更多
A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-l...A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.展开更多
The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
基金We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 51374213 and 51674251), National Natural Science Fund for Distinguished Young Scholars of China (Grant 51125017), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant 51421003), Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant PAPD 2014).
文摘The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.
文摘目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。
基金the Research Fund for the Doctoral Program of Higher Education and the Shanghai Key Discipline Project
文摘A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.