The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods f...The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.展开更多
For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implem...For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.展开更多
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were...Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.展开更多
Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eoce...Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eocene age Bhadrar formation may provide commercial production with lower water cuts from the eastern lobe (yet untapped) of the structure that may have at least 30 million barrels of unrecovered oil. Horizontal drilling may have promise as an optimum technique for recovery of oil from Paleogene reservoirs. Encouraging oil indications have also been recorded from the early Permian age tobra formation from Balkassar oxy-1 that was not tested by Oxy. Tobra sandstone reservoir can have a matrix porosity approaching 8%. When fractured recoveries from it can be relatively better than the Paleogene reservoirs. The 2D and 3D seismic acquisition has confirmed that the eastern lobe (yet untapped) of the Balkassar field is structurally higher and steeper than the Western lobe which has thus far produced over 30 million barrels. The Eastern lobe thus offers good potential for recovery of oil from the Bhadrar reservoir. The entire field is likely to have potential for recovery of oil from the early Eocene aged Tobra formation. 2-d and 3-D Seismic data interpretation, attribute analysis and visualization for deeper prospect carried in Balksasar field. Tobra and Khewra formation studied for deeper potential drilling. Time contour and depth contour map shows potential for deeper prospects. Also attribute analysis and 3d visualization show good results for deeper potential of Tobra and Khewar formations. Seismic amplitude, Reflection strength, Apparent polarity attribute are visualized and interpreted to find the potential for Tobra and Khewra formation. 3-D visualization also showed positive results for Tobra and Khewra formations.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, ...To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, modifying the generalized minimum residual(GMRES) algorithm and constructing an Open MP plus MPI parallel model. The validations of accuracy and efficiency show that this method can solve 3-D seismic response of a large-scale hill topography for broadband waves, and overcome the weakness of large storage and low efficiency of the traditional IBEM. Based on this new algorithm architecture, taking the broadband scattering of plane SV waves by a large-scale Gaussian-shaped hill of thousands-meters height as an example, the influence of several important parameters is investigated, including the incident frequency, the incident angle and the height-width and length-width ratio of the hill. The numerical results illustrate that the amplification effect on the ground motion by a near-hemispherical hill is more significant than the narrow hill. For low-frequency waves, the scattering effect of the higher hill is more pronounced, and there is only a single peak near the top of the hill. However, for high-frequency waves, rapid spatial variation of displacement amplitude appears on the hill surface.展开更多
: In this paper, 3-D velocity images of the crust and upper mantle beneath the Nanbei tectonic zone of China are constructed using P-wave travel time residuals of earthquakes, with the data supplied by China's sei...: In this paper, 3-D velocity images of the crust and upper mantle beneath the Nanbei tectonic zone of China are constructed using P-wave travel time residuals of earthquakes, with the data supplied by China's seismic networks and the International Seismic Centre.展开更多
The main purpose of this research is to estimate the structural analysis and hydrocarbon potential of Miano Block by using seismic and well log techniques. Miano area hosts a number of gas fields with structural and s...The main purpose of this research is to estimate the structural analysis and hydrocarbon potential of Miano Block by using seismic and well log techniques. Miano area hosts a number of gas fields with structural and stratigraphic traps. The area is located in Central Indus Basin which is a part of an extensional regime exhibiting normal faulting due to the split of the Indian Plate firstly from Africa and then from Madagascar and Seychelles. Miano area recognized as a proven petroleum province which has complex tectonic history of Cretaceous extensional and overprints of Tertiary strike-slip tectonics. The area has prospect with accumulation of hydrocarbons in structural and stratigraphic traps including pinchouts. NW-SE oriented Khairpur and Mari Highs are main structural features with impact on the fault system. The sands of Lower Goru of Lower Cretaceous age are acting as a reservoir in the area. The area has great potential of hydrocarbons for which more exploratory wells are required to be drilled with better insight of structural and stratigraphic traps.展开更多
3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a th...3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.展开更多
Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The...Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.展开更多
The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly ...The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly characterized by low velocity of P wave, can be divided into three parts in terms of depth. At the depth range of 9-15 km, the distribution of the magma system is characterized by extensiveness, large scale and near-SN orientation. This layer is the major place for magma storage. From the depth of 15 km down to the lower crust, it is characterized by small lateral scale, which indicates the 'trace' of magma intrusion from the upper mantle into the crust and also implies that the magma system most probably extends to the upper mantle, or even deeper.(less than 8-9 km deep), the range of magma distribution is even smaller, centering on an SN-oriented area just north of the Tianchi crater. If low velocity of P wave is related to the magma system, it then reflects that the magma here is still in a state of relatively high temperature. In this sense, the magma system of Changbaishan-Tianchi volcanic region is at least not 'remains', in other words, it is in an 'active' state.展开更多
Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are u...Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.展开更多
Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algo...Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.展开更多
The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-...The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.展开更多
It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D sei...It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D seismic data.The 3-D seismic horizon slices,especially,can play an important role in the sandstone prediction of meandering rivers,distributary channels and low-sinuosity channels.Every microfacies unit,including main channels,such as sinuous or branching channels,levee,crevasse channels,ligule crevasse splay and floodplain etc.can be identified.Braided channel sandstones are planar tabular lateral-connected sandbodies and the distribution of thick main channel belts can only be identified from 3-D seismic data.As the braided sandstones are ubiquitous,their occurrence and distribution do not need to be predicted.Generally,the coal velocity is so low that it can create a strong amplitude reflection in coal strata.It consequently conceals the amplitude respondence to anastomosing channel sandstone which could be identified from 3-D seismic inversion data sometimes.Case studies of mud-rich low-sinuosity rivers identified with 3-D seismic data indicate that the scales and width-to-thickness ratio of such sandbodies are small,laterally unconnected,and generally occurred on distant or further parts of an alluvial fan under dry climate conditions.Sometimes extraction of seismic attributes of every reflection event along horizons is expected to maximize expression of the spatial evolutions of ancient channels.展开更多
The analysis of seismic wave propagation and amplification in complex geological structures requires efficient numerical methods.In this article,following up on recent studies devoted to the formulation,implementation...The analysis of seismic wave propagation and amplification in complex geological structures requires efficient numerical methods.In this article,following up on recent studies devoted to the formulation,implementation and evaluation of 3-D single-and multi-region elastodynamic fast multipole boundary element methods(FM-BEMs),a simple preconditioning strategy is proposed.Its efficiency is demonstrated on both the single-andmulti-region versions using benchmark examples(scattering of plane waves by canyons and basins).Finally,the preconditioned FM-BEM is applied to the scattering of plane seismic waves in an actual configuration(alpine basin of Grenoble,France),for which the high velocity contrast is seen to significantly affect the overall efficiency of the multi-region FM-BEM.展开更多
文摘The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.
基金The National Basic Research Program of China(973Program)(No2006CB303105)the Research Foundation of Bei-jing Jiaotong University (NoK06J0170)
文摘For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.
文摘Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.
文摘Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eocene age Bhadrar formation may provide commercial production with lower water cuts from the eastern lobe (yet untapped) of the structure that may have at least 30 million barrels of unrecovered oil. Horizontal drilling may have promise as an optimum technique for recovery of oil from Paleogene reservoirs. Encouraging oil indications have also been recorded from the early Permian age tobra formation from Balkassar oxy-1 that was not tested by Oxy. Tobra sandstone reservoir can have a matrix porosity approaching 8%. When fractured recoveries from it can be relatively better than the Paleogene reservoirs. The 2D and 3D seismic acquisition has confirmed that the eastern lobe (yet untapped) of the Balkassar field is structurally higher and steeper than the Western lobe which has thus far produced over 30 million barrels. The Eastern lobe thus offers good potential for recovery of oil from the Bhadrar reservoir. The entire field is likely to have potential for recovery of oil from the early Eocene aged Tobra formation. 2-d and 3-D Seismic data interpretation, attribute analysis and visualization for deeper prospect carried in Balksasar field. Tobra and Khewra formation studied for deeper potential drilling. Time contour and depth contour map shows potential for deeper prospects. Also attribute analysis and 3d visualization show good results for deeper potential of Tobra and Khewar formations. Seismic amplitude, Reflection strength, Apparent polarity attribute are visualized and interpreted to find the potential for Tobra and Khewra formation. 3-D visualization also showed positive results for Tobra and Khewra formations.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金National Natural Science Foundation of China under Grant No. 51678390National Natural Science Foundation of China under Grant No. 51708391the Major Science and Technology Projects in Tianjin under Grant No. 18ZXAQSF00110。
文摘To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, modifying the generalized minimum residual(GMRES) algorithm and constructing an Open MP plus MPI parallel model. The validations of accuracy and efficiency show that this method can solve 3-D seismic response of a large-scale hill topography for broadband waves, and overcome the weakness of large storage and low efficiency of the traditional IBEM. Based on this new algorithm architecture, taking the broadband scattering of plane SV waves by a large-scale Gaussian-shaped hill of thousands-meters height as an example, the influence of several important parameters is investigated, including the incident frequency, the incident angle and the height-width and length-width ratio of the hill. The numerical results illustrate that the amplification effect on the ground motion by a near-hemispherical hill is more significant than the narrow hill. For low-frequency waves, the scattering effect of the higher hill is more pronounced, and there is only a single peak near the top of the hill. However, for high-frequency waves, rapid spatial variation of displacement amplitude appears on the hill surface.
文摘: In this paper, 3-D velocity images of the crust and upper mantle beneath the Nanbei tectonic zone of China are constructed using P-wave travel time residuals of earthquakes, with the data supplied by China's seismic networks and the International Seismic Centre.
文摘The main purpose of this research is to estimate the structural analysis and hydrocarbon potential of Miano Block by using seismic and well log techniques. Miano area hosts a number of gas fields with structural and stratigraphic traps. The area is located in Central Indus Basin which is a part of an extensional regime exhibiting normal faulting due to the split of the Indian Plate firstly from Africa and then from Madagascar and Seychelles. Miano area recognized as a proven petroleum province which has complex tectonic history of Cretaceous extensional and overprints of Tertiary strike-slip tectonics. The area has prospect with accumulation of hydrocarbons in structural and stratigraphic traps including pinchouts. NW-SE oriented Khairpur and Mari Highs are main structural features with impact on the fault system. The sands of Lower Goru of Lower Cretaceous age are acting as a reservoir in the area. The area has great potential of hydrocarbons for which more exploratory wells are required to be drilled with better insight of structural and stratigraphic traps.
文摘3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.
文摘Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.
基金Key project of the Ninth Five-Year plan from China Seismological Bureau (95-11-02-01).Contribution No. RCEG200107, Research Ce
文摘The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly characterized by low velocity of P wave, can be divided into three parts in terms of depth. At the depth range of 9-15 km, the distribution of the magma system is characterized by extensiveness, large scale and near-SN orientation. This layer is the major place for magma storage. From the depth of 15 km down to the lower crust, it is characterized by small lateral scale, which indicates the 'trace' of magma intrusion from the upper mantle into the crust and also implies that the magma system most probably extends to the upper mantle, or even deeper.(less than 8-9 km deep), the range of magma distribution is even smaller, centering on an SN-oriented area just north of the Tianchi crater. If low velocity of P wave is related to the magma system, it then reflects that the magma here is still in a state of relatively high temperature. In this sense, the magma system of Changbaishan-Tianchi volcanic region is at least not 'remains', in other words, it is in an 'active' state.
基金supported by the National Natural Science Foundation of China(No.42072169)。
文摘Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.
基金supported by the Center for Energy and Geo Processing(CeGP) at King Fahd University of Petroleum&Minerals(KFUPM),under Project no.GTEC 1401-1402
文摘Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.
基金the National Natural Science Foundation of China(NSFC)program(41472084)the China Earthquake Administration,Institute of Seismology Foundation(IS201526246)for providing funding and for allowing publication of this paper
文摘The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.
基金supported by the National 973 Project (No.2003CB214602)
文摘It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D seismic data.The 3-D seismic horizon slices,especially,can play an important role in the sandstone prediction of meandering rivers,distributary channels and low-sinuosity channels.Every microfacies unit,including main channels,such as sinuous or branching channels,levee,crevasse channels,ligule crevasse splay and floodplain etc.can be identified.Braided channel sandstones are planar tabular lateral-connected sandbodies and the distribution of thick main channel belts can only be identified from 3-D seismic data.As the braided sandstones are ubiquitous,their occurrence and distribution do not need to be predicted.Generally,the coal velocity is so low that it can create a strong amplitude reflection in coal strata.It consequently conceals the amplitude respondence to anastomosing channel sandstone which could be identified from 3-D seismic inversion data sometimes.Case studies of mud-rich low-sinuosity rivers identified with 3-D seismic data indicate that the scales and width-to-thickness ratio of such sandbodies are small,laterally unconnected,and generally occurred on distant or further parts of an alluvial fan under dry climate conditions.Sometimes extraction of seismic attributes of every reflection event along horizons is expected to maximize expression of the spatial evolutions of ancient channels.
文摘The analysis of seismic wave propagation and amplification in complex geological structures requires efficient numerical methods.In this article,following up on recent studies devoted to the formulation,implementation and evaluation of 3-D single-and multi-region elastodynamic fast multipole boundary element methods(FM-BEMs),a simple preconditioning strategy is proposed.Its efficiency is demonstrated on both the single-andmulti-region versions using benchmark examples(scattering of plane waves by canyons and basins).Finally,the preconditioned FM-BEM is applied to the scattering of plane seismic waves in an actual configuration(alpine basin of Grenoble,France),for which the high velocity contrast is seen to significantly affect the overall efficiency of the multi-region FM-BEM.