Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive prop...Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.展开更多
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ...Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.展开更多
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将...目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。展开更多
The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method...Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasin...3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasing personalization demand and still guarantee aesthetics.This paper proposes amethod to construct 3-D human models by applying deep learning.We calculate the location of the main slices of the human body,including the neck,chest,belly,buttocks,and the rings of the extremities,using pre-existing information.Then,on the positioning frame,we find the key points(fixed and unaltered)of these key slices and update these points tomatch the current parameters.To add points to a star slice,we use a deep learning model tomimic the form of the human body at that slice position.We use interpolation to produce sub-slices of different body sections based on the main slices to create complete body parts morphologically.We combine all slices to construct a full 3-D representation of the human body.展开更多
This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensiona...This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.展开更多
文摘Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.
基金supported by National Natural Science Foundation of China(52208272,41706080 and 51702328)the Basic Scientific Fund for National Public Research Institutes of China(2020S02 and 2019Y03)+3 种基金the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-DQC025)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210201)the Strategic Leading Science&Technology Program of the Chinese Academy of Sciences(XDA13040403)the Key Research and Development Program of Shandong Province(Major Scientific and Technological Innovation Project)(2019JZZY020711).
文摘Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.
文摘目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.
基金the China Natural Science Fund(No.52171253)the Natural Science Foundation of Sichuan(No.2022NSFSCO949).
文摘Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
基金Funding for this study from Sai Gon University(Grant No.CSA2021–08).
文摘3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasing personalization demand and still guarantee aesthetics.This paper proposes amethod to construct 3-D human models by applying deep learning.We calculate the location of the main slices of the human body,including the neck,chest,belly,buttocks,and the rings of the extremities,using pre-existing information.Then,on the positioning frame,we find the key points(fixed and unaltered)of these key slices and update these points tomatch the current parameters.To add points to a star slice,we use a deep learning model tomimic the form of the human body at that slice position.We use interpolation to produce sub-slices of different body sections based on the main slices to create complete body parts morphologically.We combine all slices to construct a full 3-D representation of the human body.
基金the two referees for very helpful comments and suggestions to improve the quality of the paper.This work was partially supported by the Natural Science Foundation of Zhejiang province of China(LY21A010017)the National Natural Science Foundation of China(12071106,12171130).
文摘This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.