This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized ...This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.展开更多
This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. Af...This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.展开更多
Three-dimensional (3-D) video applications, such as 3-D cinema, 3DTV, ana Free Viewpomt Video (FVV) are attracting more attention both from the industry and in the literature. High accuracy of depth video is a fun...Three-dimensional (3-D) video applications, such as 3-D cinema, 3DTV, ana Free Viewpomt Video (FVV) are attracting more attention both from the industry and in the literature. High accuracy of depth video is a fundamental prerequisite for most 3-D applications. However, accurate depth requires computationally intensive global optimization. This high computational complexity is one of the bottlenecks to applying depth generation to 3-D applications, especially for mobile networks since mobile terminals usually have limited computing ability. This paper presents a semi-global depth estimation algorithm based on temporal consis- tency, where the depth propagation is used to generate initial depth values for the computationally intensive global optimization. The accuracy of initial depth is improved by detecting and eliminating the depth propagation outliers before the global optimization. Integrating the initial values without outliers into the global optimization reduces the computational complexity while maintaining the depth accuracy. Tests demonstrate that the algorithm reduces the total computational time by 54%-65% while the quality of the virtual views is essentially equivalent to the benchmark.展开更多
China-America Digital Academic Library Project (CADAL) is a collaborative project between universities and institutes in China and the USA, which aims to provide universal access to large scale digital resources and e...China-America Digital Academic Library Project (CADAL) is a collaborative project between universities and institutes in China and the USA, which aims to provide universal access to large scale digital resources and explore the ways of applying multimedia and virtual reality technologies to digital library. The distinct characteristic of the resources in CADAL is that it not only contains one million digital books of different languages, but also contains Terabyte level multimedia resources (image, video, and so on), which are utilized for education and research purposes. So, in the Portal to CADAL, both the traditional services of browsing and searching of digital books, and the services of quickly retrieving and structurally browsing of multimedia documents should be provided. In addition, the services of visual presentation of retrieved results are required too. In this paper, the underlying novel multimedia retrieval methods as well as visualization techniques, which are used in the CADAL portal, are investigated.展开更多
SecA is the essential component of the signal-peptide dependent translocation pathway in Escherichia coil (E.coh). The structure and function of SecA must be known to understand the molecular mechanism of preprotein...SecA is the essential component of the signal-peptide dependent translocation pathway in Escherichia coil (E.coh). The structure and function of SecA must be known to understand the molecular mechanism of preprotein translocation. The high flexibility of SecA causes a dynamic conformational heterogeneity which presents a barrier to the growth of crystals of high diffraction quality. Electron microscopy was used to resolve the macromolecular structure of SecA in solution by negative staining and single particle analysis at a resolution of 2.9 nm. The structure of E. coil SecA is similar to the dimeric form of Bacillus subtilis SecA and is 10 nm × 10 nm × 5 nm in size.展开更多
文摘This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.
文摘This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.
基金Supported by the National Key Basic Research and Development (973) Program of China (No.2010CB731800)
文摘Three-dimensional (3-D) video applications, such as 3-D cinema, 3DTV, ana Free Viewpomt Video (FVV) are attracting more attention both from the industry and in the literature. High accuracy of depth video is a fundamental prerequisite for most 3-D applications. However, accurate depth requires computationally intensive global optimization. This high computational complexity is one of the bottlenecks to applying depth generation to 3-D applications, especially for mobile networks since mobile terminals usually have limited computing ability. This paper presents a semi-global depth estimation algorithm based on temporal consis- tency, where the depth propagation is used to generate initial depth values for the computationally intensive global optimization. The accuracy of initial depth is improved by detecting and eliminating the depth propagation outliers before the global optimization. Integrating the initial values without outliers into the global optimization reduces the computational complexity while maintaining the depth accuracy. Tests demonstrate that the algorithm reduces the total computational time by 54%-65% while the quality of the virtual views is essentially equivalent to the benchmark.
基金Project supported by the National Natural Science Foundation of China (Nos. 60272031 and 90412014) and the China-America Digital Academic Library Project
文摘China-America Digital Academic Library Project (CADAL) is a collaborative project between universities and institutes in China and the USA, which aims to provide universal access to large scale digital resources and explore the ways of applying multimedia and virtual reality technologies to digital library. The distinct characteristic of the resources in CADAL is that it not only contains one million digital books of different languages, but also contains Terabyte level multimedia resources (image, video, and so on), which are utilized for education and research purposes. So, in the Portal to CADAL, both the traditional services of browsing and searching of digital books, and the services of quickly retrieving and structurally browsing of multimedia documents should be provided. In addition, the services of visual presentation of retrieved results are required too. In this paper, the underlying novel multimedia retrieval methods as well as visualization techniques, which are used in the CADAL portal, are investigated.
基金Supported by the National Natural Science Foundation of China (Nos. 30170196 and 30330160)
文摘SecA is the essential component of the signal-peptide dependent translocation pathway in Escherichia coil (E.coh). The structure and function of SecA must be known to understand the molecular mechanism of preprotein translocation. The high flexibility of SecA causes a dynamic conformational heterogeneity which presents a barrier to the growth of crystals of high diffraction quality. Electron microscopy was used to resolve the macromolecular structure of SecA in solution by negative staining and single particle analysis at a resolution of 2.9 nm. The structure of E. coil SecA is similar to the dimeric form of Bacillus subtilis SecA and is 10 nm × 10 nm × 5 nm in size.