The rapid progress of wireless communication and the availability of many small-sized, light-weighted and low-cost communication and computing devices nowadays have greatly impacted the development of wireless sensor ...The rapid progress of wireless communication and the availability of many small-sized, light-weighted and low-cost communication and computing devices nowadays have greatly impacted the development of wireless sensor network. Localization using sensor network has attracted much attention for its comparable low-cost and potential use with mon- itoring and targeting purposes in real and hostile application scenarios. Currently, there are many available approaches to locating persons/things based on global positioning system (GPS) and radio-frequency identification (RFID) technologies. However, in some application scenario, e.g., disaster rescue application, such localization devices may be damaged and may not provide the location information of the survivors. The main goal of this paper is to design and develop a robust localization technique for human existence detection in case of disasters such as earthquake or fire. In this paper, we propose a 3-D localization technique based on the hop-count data collected from sensor anchors to estimate the location of the activated sensor mote in 3-D coordination. Our algorithm incorporates two salient features, cubic-based output and event-triggering mechanism, to guarantee both improved accuracy and power efficiency. Both simulation and experimental results indicate that the proposed algorithm can improve the localization precision of the human existence and work well in real environment.展开更多
In wireless sensor networks (WSNs) the position information of individual nodes is a matter of vital importance because allows the implementation of necessary network functions such as routing, querying and other ap...In wireless sensor networks (WSNs) the position information of individual nodes is a matter of vital importance because allows the implementation of necessary network functions such as routing, querying and other applications. The objective of this paper is to propose an algorithm of three-dimensional distributed range-free localization for WSNs, using a mobile beacon (MB) equipped with a rotary and tilting directional antenna. This algorithm, denominated as the three-dimensional azimuthally defined area localization algorithm (3D- ADAL), is executed in each sensor node and is based only on the analysis of the information received from the MB, therefore is energy efficient and contributes to extend the lifetime of the sensor network. Additionally the proposed algorithm has the advantage of being simple and economical. The simulation results show that the proposed algorithm is a practical, effective and accurate method for a three-dimensional location of sensor nodes in a WSN.展开更多
During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which d...During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.展开更多
Mobility metrics of wireless networks such as link availability, number of neighboring nodes, link duration, link state, and link stability make it difficult to provide a node with quality of services guarantee. In pr...Mobility metrics of wireless networks such as link availability, number of neighboring nodes, link duration, link state, and link stability make it difficult to provide a node with quality of services guarantee. In previous research on Quality of Service (QoS) for cellular networks especially for handling handoff connections, the design was based on a flat 2D hexagon cells. However, in reality Base Station antenna coverage is in a 3D space and there exists a blind spot;the area which is just above and bellow the radiated antenna. In this paper we introduce the concept of Blind Spot (BS) in which there is no signals to initiate a call or accepting a handoff one. In BS, the signal power equal zero. Even if there is enough bandwidth to initiate or accept a handoff call, it will be blocked or dropped respectively. We present an implementation of Static Borrowing Scheme (SBS) and we extend the dynamic-rate based borrowing scheme [1] into 3-Dimentional structure and call it 3-Dimensional Dynamic Based Borrowing Scheme (3D DBBS). The proposed new technique for resource sharing is to ensure the continuity for both originating and handoff connections in 3-D cellular networks based on Dynamic-Based Borrowing Scheme (3D BBS). This technique aims to minimize the blocking probability of the originating calls by minimizing the dropping probability of the handoff requests and maximizing the channel utilization. The results revealed that 3D DBBS outperformed the static based schemes by 5% on average even when the blind spot of the base station antenna is taken into consideration. When moving to a 3D space, the results of the simulation showed the 3D DBBS outperformed the static scheme by 2% on average. As a result, considering nodes in a 3D space will have better QoS guarantee as the blocking and dropping probabilities are decreased. Thus, the bandwidth utilization is increased.展开更多
This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main...This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this p...Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this problem,a new 3D directional sensor model and coverage enhancement algorithm is proposed. We can adjust the pitch angle and deviation angle to enhance the coverage rate. And the coverage enhancement algorithm is based on an improved gravitational search algorithm. In this paper the two improved strategies of GSA are directional mutation strategy and individual evolution strategy. A set of simulations show that our coverage enhancement algorithm has a good performance to improve the coverage rate of the wireless directional sensor network on different number of nodes,different virtual angles and different sensing radius.展开更多
The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication sys...The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.展开更多
Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which uti...Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.展开更多
The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor...The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor the physical environment and report the collected data to the base station,allowing for smarter decisions.Localization in wireless sensor networks is to localize a sensor node in a two-dimensional plane.However,in some application areas,such as various surveillances,underwater monitoring systems,and various environmental monitoring applications,wireless sensors are deployed in a three-dimensional plane.Recently,localization-based applications have emerged as one of the most promising services related to IoT.In this paper,we propose a novel distributed range-free algorithm for node localization in wireless sensor networks.The proposed three-dimensional hop localization algorithm is based on the distance error correction factor.In this algorithm,the error decreases with the localization process.The distance correction factor is used at various stages of the localization process,which ultimately mitigates the error.We simulated the proposed algorithm using MATLAB and verified the accuracy of the algorithm.The simulation results are compared with some of the well-known existing algorithms in the literature.The results show that the proposed three-dimensional error-correctionbased algorithm performs better than existing algorithms.展开更多
Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on hu...Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on human body, create a wireless body area network (WBAN) to monitor various physiological vital signs for a long period of time and providing real-time feedback to the user and medical staff. WBANs promise to revolutionize health monitoring. In this paper, medical sensors were used to collect physiological data from patients and transmit it to Intelligent Personal digital Assistant (IPDA) using ZigBee/IEEE802.15.4 standard and to medical server using 3G communications. We introduced priority scheduling and data compression into the system to increase transmission rate of physiological critical signals which improve the bandwidth utilization. It also extends the life time of hand-held personal server by reducing power consumption during transmission.展开更多
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu...Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.展开更多
Due to the power limitation of nodes in wire-less sensor networks (WSNs), how to maximize network lifetime has become a critical issue for deployment of WSNs. Although several schemes have been proposed for 2D WSNs, f...Due to the power limitation of nodes in wire-less sensor networks (WSNs), how to maximize network lifetime has become a critical issue for deployment of WSNs. Although several schemes have been proposed for 2D WSNs, few for 3D WSNs are known. In this paper, we present a scheme to maximize network lifetime for 3D WSNs through balancing energy consumption, as an extension of the existing scheme for 2D WSNs proposed recently [1]. Same as [1], we formulate the energy consumption balancing problem as an problem of optimal distribution of transmitting data by combining the techniques of sphere-corona based network division, mixed-routing and data aggregation. We first present a Tiled-block based routing scheme in order to balance energy consumption among nodes in each sphere-corona. Then we design an algorithm to compute the optimal distribution ratio of transmitting data between direct and hop-by-hop transmission, with the purpose of balancing energy consumption among nodes across different sphere-coronas. We show maximizing network lifetime through computing the optimal number of sphere-coronas. Afterwards a energy consumption balanced data collecting protocol (ECBDC) is designed and a solution to extend ECBDC to largescale WSNs is also presented. Simulaiton results show that ECBDC is superior to conventional direct and multihop transmission schemes in network lifetime.展开更多
文摘The rapid progress of wireless communication and the availability of many small-sized, light-weighted and low-cost communication and computing devices nowadays have greatly impacted the development of wireless sensor network. Localization using sensor network has attracted much attention for its comparable low-cost and potential use with mon- itoring and targeting purposes in real and hostile application scenarios. Currently, there are many available approaches to locating persons/things based on global positioning system (GPS) and radio-frequency identification (RFID) technologies. However, in some application scenario, e.g., disaster rescue application, such localization devices may be damaged and may not provide the location information of the survivors. The main goal of this paper is to design and develop a robust localization technique for human existence detection in case of disasters such as earthquake or fire. In this paper, we propose a 3-D localization technique based on the hop-count data collected from sensor anchors to estimate the location of the activated sensor mote in 3-D coordination. Our algorithm incorporates two salient features, cubic-based output and event-triggering mechanism, to guarantee both improved accuracy and power efficiency. Both simulation and experimental results indicate that the proposed algorithm can improve the localization precision of the human existence and work well in real environment.
文摘In wireless sensor networks (WSNs) the position information of individual nodes is a matter of vital importance because allows the implementation of necessary network functions such as routing, querying and other applications. The objective of this paper is to propose an algorithm of three-dimensional distributed range-free localization for WSNs, using a mobile beacon (MB) equipped with a rotary and tilting directional antenna. This algorithm, denominated as the three-dimensional azimuthally defined area localization algorithm (3D- ADAL), is executed in each sensor node and is based only on the analysis of the information received from the MB, therefore is energy efficient and contributes to extend the lifetime of the sensor network. Additionally the proposed algorithm has the advantage of being simple and economical. The simulation results show that the proposed algorithm is a practical, effective and accurate method for a three-dimensional location of sensor nodes in a WSN.
基金Supported by the National Natural Science Foundation of China (No.61003236 61171053)+2 种基金the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province (No.11KJA520001)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CXZZ12_0481)
文摘During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.
文摘Mobility metrics of wireless networks such as link availability, number of neighboring nodes, link duration, link state, and link stability make it difficult to provide a node with quality of services guarantee. In previous research on Quality of Service (QoS) for cellular networks especially for handling handoff connections, the design was based on a flat 2D hexagon cells. However, in reality Base Station antenna coverage is in a 3D space and there exists a blind spot;the area which is just above and bellow the radiated antenna. In this paper we introduce the concept of Blind Spot (BS) in which there is no signals to initiate a call or accepting a handoff one. In BS, the signal power equal zero. Even if there is enough bandwidth to initiate or accept a handoff call, it will be blocked or dropped respectively. We present an implementation of Static Borrowing Scheme (SBS) and we extend the dynamic-rate based borrowing scheme [1] into 3-Dimentional structure and call it 3-Dimensional Dynamic Based Borrowing Scheme (3D DBBS). The proposed new technique for resource sharing is to ensure the continuity for both originating and handoff connections in 3-D cellular networks based on Dynamic-Based Borrowing Scheme (3D BBS). This technique aims to minimize the blocking probability of the originating calls by minimizing the dropping probability of the handoff requests and maximizing the channel utilization. The results revealed that 3D DBBS outperformed the static based schemes by 5% on average even when the blind spot of the base station antenna is taken into consideration. When moving to a 3D space, the results of the simulation showed the 3D DBBS outperformed the static scheme by 2% on average. As a result, considering nodes in a 3D space will have better QoS guarantee as the blocking and dropping probabilities are decreased. Thus, the bandwidth utilization is increased.
文摘This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61175126)National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20112304110009)the Fundamental Research Funds for the Central Universities of China(Grant No.HEUCFZ1209)
文摘Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this problem,a new 3D directional sensor model and coverage enhancement algorithm is proposed. We can adjust the pitch angle and deviation angle to enhance the coverage rate. And the coverage enhancement algorithm is based on an improved gravitational search algorithm. In this paper the two improved strategies of GSA are directional mutation strategy and individual evolution strategy. A set of simulations show that our coverage enhancement algorithm has a good performance to improve the coverage rate of the wireless directional sensor network on different number of nodes,different virtual angles and different sensing radius.
文摘The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.
基金Supported by the Important National Science and Technology Specific Project of China(No.20112X03002-002-03)the National NatureScience Foundation of China(No.61133016,61163066)
文摘Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.
基金the Research Grant of Kwangwoon University in 2020.
文摘The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor the physical environment and report the collected data to the base station,allowing for smarter decisions.Localization in wireless sensor networks is to localize a sensor node in a two-dimensional plane.However,in some application areas,such as various surveillances,underwater monitoring systems,and various environmental monitoring applications,wireless sensors are deployed in a three-dimensional plane.Recently,localization-based applications have emerged as one of the most promising services related to IoT.In this paper,we propose a novel distributed range-free algorithm for node localization in wireless sensor networks.The proposed three-dimensional hop localization algorithm is based on the distance error correction factor.In this algorithm,the error decreases with the localization process.The distance correction factor is used at various stages of the localization process,which ultimately mitigates the error.We simulated the proposed algorithm using MATLAB and verified the accuracy of the algorithm.The simulation results are compared with some of the well-known existing algorithms in the literature.The results show that the proposed three-dimensional error-correctionbased algorithm performs better than existing algorithms.
文摘Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on human body, create a wireless body area network (WBAN) to monitor various physiological vital signs for a long period of time and providing real-time feedback to the user and medical staff. WBANs promise to revolutionize health monitoring. In this paper, medical sensors were used to collect physiological data from patients and transmit it to Intelligent Personal digital Assistant (IPDA) using ZigBee/IEEE802.15.4 standard and to medical server using 3G communications. We introduced priority scheduling and data compression into the system to increase transmission rate of physiological critical signals which improve the bandwidth utilization. It also extends the life time of hand-held personal server by reducing power consumption during transmission.
文摘Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.
文摘Due to the power limitation of nodes in wire-less sensor networks (WSNs), how to maximize network lifetime has become a critical issue for deployment of WSNs. Although several schemes have been proposed for 2D WSNs, few for 3D WSNs are known. In this paper, we present a scheme to maximize network lifetime for 3D WSNs through balancing energy consumption, as an extension of the existing scheme for 2D WSNs proposed recently [1]. Same as [1], we formulate the energy consumption balancing problem as an problem of optimal distribution of transmitting data by combining the techniques of sphere-corona based network division, mixed-routing and data aggregation. We first present a Tiled-block based routing scheme in order to balance energy consumption among nodes in each sphere-corona. Then we design an algorithm to compute the optimal distribution ratio of transmitting data between direct and hop-by-hop transmission, with the purpose of balancing energy consumption among nodes across different sphere-coronas. We show maximizing network lifetime through computing the optimal number of sphere-coronas. Afterwards a energy consumption balanced data collecting protocol (ECBDC) is designed and a solution to extend ECBDC to largescale WSNs is also presented. Simulaiton results show that ECBDC is superior to conventional direct and multihop transmission schemes in network lifetime.