期刊文献+
共找到3,931篇文章
< 1 2 197 >
每页显示 20 50 100
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
1
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
2
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
下载PDF
Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures
3
作者 Huiyuan Wang Siqin Liu +12 位作者 Xincheng Yin Mingming Huang Yanzhe Fu Xun Chen Chao Wang Jingyong Sun Xin Yan Jianmin Han Jiping Yang Zhijian Wang Lizhen Wang Yubo Fan Jiebo Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期247-260,共14页
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting... 3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more. 展开更多
关键词 3D printing polar coordinate line projection LIGHT-CURING tubular structure radially multi-material structures
下载PDF
Biomimetic 3D printing of composite structures with decreased cracking
4
作者 Fan Du Kai Li +7 位作者 Mingzhen Li Junyang Fang Long Sun Chao Wang Yexin Wang Maiqi Liu Jinbang Li Xiaoying Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期24-34,共11页
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar... The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators. 展开更多
关键词 3D printing Electrohydrodynamic jet BIOMIMETIC structural integrity Composite scaffold
下载PDF
Exploring the Core-shell Structure of BaTiO3-based Dielectric Ceramics Using Machine Learning Models and Interpretability Analysis
5
作者 孙家乐 XIONG Peifeng +1 位作者 郝华 LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期561-569,共9页
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter... A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features. 展开更多
关键词 machine learning BaTiO_(3) core-shell structure random forest classifier
下载PDF
Valence electron structures dependences of structural stability and properties of REX_(3)(RE=rare earth;X=In,Tl)and RE(In,Co)3 alloys
6
作者 Boyang Li Yongquan Guo +2 位作者 Yi-Chen Feng Xinze Wang Wei Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期331-339,共9页
Intermetallic compounds REIn3(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobalt d... Intermetallic compounds REIn3(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobalt diluted alloys exhibit the ferromagnetic half-metallic characteristics at room temperature.In this study,an empirical electron theory(EET)is employed to investigate systemically the valence electronic structure,the thermal and magnetic properties of REX_(3) and their cobalt diluted alloys for revealing the mechanism of physical properties.The calculated bond length,melting point,and magnetic moment match the experimental ones very well.The study reveals that structural stability and physical properties of REX_(3) and their cobalt dilute alloys are strongly related to their valence electron structures.It is suggested that the structural stability and cohesive energy depend upon the covalent electron,the melting point is modulated by covalent electron pair,and the magnetic moment is originated from 3d magnetic electron.The ferromagnetic characteristics of Co-diluted REIn3 alloys is originated from the introduction of strong ferromagnetic Co atom,but,a competition is caused between the electron transition from valence electron to magnetic electron on d orbit and its reversal electron transformation with increasing the content of cobalt,which results in the formations of diluted magnetic Gd(In,Co)3 alloy with minor amount of cobalt and strong magnetic Nd(In,Co)3 alloy with doping more Co atoms. 展开更多
关键词 REX_(3) cobalt dilute alloy valence electron structures empirical electron theory MOMENT
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
7
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
下载PDF
Mechanical Properties and Electronic Structures of M(M=Ti,V,Cr,Mn and Fe)Dopedβ-Si_(3)N_(4) from First-Principle
8
作者 龙敏 黄福祥 +4 位作者 XU Liangyu LI Xuemei YANG Zhou LENG Yue MEI Shini 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期639-644,共6页
The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters of... The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters ofβ-Si_(3)N_(4) were consistent with previous date.The cohesive energy and formation enthalpy show that initialβ-Si_(3)N_(4) has the highest structural stability.The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli ofβ-Si_(3)N_(4) are slightly reduced by M doping.Based on Poisson’s and Pugh’s ratio,β-Si_(3)N_(4) is a ductile material and the toughness ofβ-Si_(3)N_(4) increases with M doping,and Fe doping exhibited the best toughness.The results of density of states,charge distributions and overlapping populations indicate thatβ-Si_(3)N_(4) has the strong covalent and ionic bond strength between N and Si. 展开更多
关键词 first-principles β-Si_(3)N_(4) mechanical properties electronic structure
下载PDF
Acoustical properties of a 3D printed honeycomb structure filled with nanofillers:Experimental analysis and optimization for emerging applications
9
作者 Jeyanthi Subramanian Vinoth kumar Selvaraj +3 位作者 Rohan Singh Ilangovan S Naresh Kakur Ruban Whenish 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期248-258,共11页
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ... The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance. 展开更多
关键词 3D printing Honeycomb structure ACOUSTICS Field emission scanning electron microscope Response surface methodology
下载PDF
Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure
10
作者 Jun-hang Xu Bao-zhi Li +6 位作者 Zhao-wei Song Yun-bao Gao Jing-ming Li Yu Wang Qiu-lin Wen Heng Cao Zeng-rui Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期319-326,共8页
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects... The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs. 展开更多
关键词 gas turbine casing crack defects 3D printed sand mold topological structure high-temperature concession
下载PDF
Deciphering the glass-forming ability of Al_(2)O_(3)-Y_(2)O_(3)system from temperature susceptibility of melt structure
11
作者 Pingsheng Lai Xuan Ge +5 位作者 Caijuan Shi Jianqiang Li Fan Yang Wenquan Lu Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期48-57,共10页
Despite its significance in both fundamental science and industrial applications,the glass-forming tran-sition in the Al_(2)O_(3)-Y_(2)O_(3)(AY)refractory system is not yet fully understood due to the elusive structur... Despite its significance in both fundamental science and industrial applications,the glass-forming tran-sition in the Al_(2)O_(3)-Y_(2)O_(3)(AY)refractory system is not yet fully understood due to the elusive structure evolution upon cooling.Here,atomic-scale structural changes in AY-bearing melts with different compo-sitions and temperatures are tracked by employing in situ high-energy synchrotron X-ray diffraction and empirical potential structure refinement simulation.We find that the glass-forming abilities(GFA)of AY-bearing melts are intriguingly correlated with the dependence of melt structure on temperature.In the case of the Al_(2)O_(3)and Y_(3)A_(l5)O_(12)(YAG),the observed large structural changes from superheating to under-cooling melt(i.e.,higher temperature susceptibility)correspond to a low GFA.Conversely,the 74Al_(2)O_(3)-26Y_(2)O_(3)(AY26)melt,with the smallest temperature susceptibility,exhibits the highest GFA.Simulation models illustrate that the temperature susceptibility of melt is associated with its atomic arrangement,especially the stability of cation-cation pairs.A balanced network(in AY26 melt),where the unsteady OAl3 tri-clusters are minimized and steady apex-to-apex connections between adjacent network units are abundant,contributes to stabilizing cationic interactions.This,in turn,fosters the formation of large-sized Al-O-Al rings,which topologically facilitates the subsequent glass-forming transition.Our findings provide new structural insight into the GFA of AY-bearing melts and may expand to other unconventional glass-forming systems to accelerate glassy materials design. 展开更多
关键词 Glass-forming ability Al_(2)O_(3)-Y_(2)O_(3)glasses Melt structure High-energy synchrotron X-ray diffraction Aerodynamic levitation EPSR simulation
原文传递
Multi-View Structured Light 3D Measurement System
12
作者 LU Ping ZHANG Yingjie +2 位作者 DENG Fangwei LIU Wei HUANG Shijun 《ZTE Communications》 2024年第4期53-58,共6页
Vision-based measurement technology benefits high-quality manufacturers through improved dimensional precision,enhanced geo-metric tolerance,and increased product yield.The monocular 3D structured light visual sensing... Vision-based measurement technology benefits high-quality manufacturers through improved dimensional precision,enhanced geo-metric tolerance,and increased product yield.The monocular 3D structured light visual sensing method is popular for detecting online parts since it can reach micron-meter depth accuracy.However,the line-of-sight requirement of a single viewpoint vision system often fails when hiding occurs due to the object’s surface structure,such as edges,slopes,and holes.To address this issue,a multi-view 3D structured light vi-sion system is proposed in this paper to achieve high accuracy,i.e.,Z-direction repeatability,and reduce hiding probability during mechani-cal dimension measurement.The main contribution of this paper includes the use of industrial cameras with high resolution and high frame rates to achieve high-precision 3D reconstruction.Moreover,a multi-wavelength(heterodyne)phase expansion method is employed for high-precision phase calculation.By leveraging multiple industrial cameras,the system overcomes field of view occlusions,thereby broadening the 3D reconstruction field of view.Finally,the system achieves a Z-axis repetition accuracy of 0.48µm. 展开更多
关键词 3D measurement structured light MULTI-VIEW
下载PDF
3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images 被引量:12
13
作者 杨保华 吴爱祥 +1 位作者 缪秀秀 刘金枝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期833-838,共6页
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag... Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately. 展开更多
关键词 packed ore particle bed 3D pore structure X-ray computed tomography image analysis
下载PDF
Molecular dynamics simulation of relationship between local structure and dynamics during glass transition of Mg_7Zn_3 alloy 被引量:2
14
作者 侯兆阳 刘让苏 +2 位作者 徐春龙 帅学敏 舒瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1086-1093,共8页
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated... The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr). 展开更多
关键词 Mg7Zn3 alloy glass transition DYNAMICS structural relaxation molecular dynamics simulation
下载PDF
First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO_3 被引量:1
15
作者 贠江妮 张志勇 +1 位作者 邓周虎 张富春 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第9期1537-1542,共6页
The electronic structure,including band structure,density of states (DOS), and partial density of states of SrTi1-xSbxO3 with x = 0,0. 125,0.25,and 0.33 is calculated from the first principles of plane wave ultra-so... The electronic structure,including band structure,density of states (DOS), and partial density of states of SrTi1-xSbxO3 with x = 0,0. 125,0.25,and 0.33 is calculated from the first principles of plane wave ultra-soft pseudo-potential technology based on density function theory. The calculated results reveal that due to the electron doping,the Fermi level moves into the conduction bands for SrTi1-xSbxO3 with x = 0. 125 and the system shows metallic behavior. In addition, the DOS moves towards low energy and the optical band gap is broadened. The wide band gap and the low density of the states in the conduction band result in the transparency of the films. 展开更多
关键词 first principles SRTIO3 Sb-doping electronic structure transparent films
下载PDF
The 3D magnetic structure beneath the continental margin of the northeastern South China Sea 被引量:4
16
作者 李淑玲 Yaoguo Li 孟小红 《Applied Geophysics》 SCIE CSCD 2012年第3期237-246,359,共11页
Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the ... Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there. 展开更多
关键词 Continental margin of the northeastern South China Sea magnetic anomalies amplitude inversion 3D magnetic structure
下载PDF
Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in cen-tral-western China 被引量:26
17
作者 杨智娴 于湘伟 +3 位作者 郑月军 陈运泰 倪晓晞 Winston CHAN 《地震学报》 CSCD 北大核心 2004年第1期19-29,共11页
采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行... 采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行了地震的重新定位.反演结果揭示了中国中西部地区地震P波速度结构明显的横向不均匀性,这些不同深度上波速的横向变化多以该地区的活动断裂为分界线.可以看出活动断裂两侧存在明显的速度反差.通过重新定位,得到了6459次地震的震源参数,这些精确定位的地震震中明显沿该区活动断裂呈现条带状分布,其范围和尺度清晰地表示了这一地区地震活动与活动断裂的紧密关系.其中,82%重新精确定位的事件的震源深度在20km以内.这一结果与笔者用双差地震定位法得到的重新定位的震源深度分布相一致. 展开更多
关键词 地震重新定位 P波速度结构 反演 双差地震定位法 地震活动 活动断裂
下载PDF
3-D velocity structure in the central-eastern part of Qilianshan 被引量:30
18
作者 张元生 周民都 +2 位作者 荣代潞 张立光 许中秋 《地震学报》 CSCD 北大核心 2004年第3期247-255,共9页
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ... The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters. 展开更多
关键词 祁连山中东段 微震观测 三维速度结构 震源参数 联合反演
下载PDF
Formation mechanism of periodic layered structure in Ni_3Si/Zn system
19
作者 刘亚 董振 +2 位作者 宋媛媛 苏旭平 涂浩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4053-4058,共6页
The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction ... The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed. 展开更多
关键词 NI3SI ZN periodic layered structure INTERFACE DIFFUSION
下载PDF
Collisional Line Assignments and Hyperfine Structure Interpretation in Cs22^3△1g State
20
作者 李丹 谢锋 +2 位作者 李丽 Ergin H.Ahmed A.Marjatta Lyyra 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期13-19,I0003,共8页
Accurately known energy level structure of the A'∑u+b3 IIu complex of states from a recent global de-perturbation of these states has enabled additional assignments of 140 perturbation facilitated infrared-infrared... Accurately known energy level structure of the A'∑u+b3 IIu complex of states from a recent global de-perturbation of these states has enabled additional assignments of 140 perturbation facilitated infrared-infrared double resonance (PFIIDR) transitions to the 2^3△1g state from collisionally populated intermediate 1 + A Eu levels. Together with the 221 previously observed 2^3△1g←A1∑u+←X1∑g+ Eu X Eg double resonance lines [J. Chem. Phys. 128, 204313 (2008)], molecular constants and the Rydberg-Klein-Rees potential energy curve of the 23△1g state have been recalculated (excluding 54 perturbed levels). The centrifugal distortion constant has been determined and agrees well with the value calculated based on standard empirical formulas. The hyperfine structure of the 23△1g state, which has not resolved in our sub-Doppler excitation spectra of the 23△1g state, has been interpreted with a preliminary simulation. 展开更多
关键词 Cs22^3△1g state Collision-induced energy transfer Hyperfine structure
下载PDF
上一页 1 2 197 下一页 到第
使用帮助 返回顶部