Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpu...Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32℃, agitation speed 100 r. rain 1), 3.55 g. L^-1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 m190 g-L 1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production: the achieved GL conversion was 95.34% with GAMG yield of 95.15%, and GAMG concentration was 16.62 g. L^-1 which was 5 times higher than that of batch. Then, a two-step separation strat- egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D10I resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.展开更多
Glycyrrhizin(GL)and Glycyrrhetic Acid 3-O-mono-β-D-glucuronide(GAMG)are the typical triterpenoid glycosides found in the root of licorice,a popular medicinal plant that exhibits diverse physiological effects and phar...Glycyrrhizin(GL)and Glycyrrhetic Acid 3-O-mono-β-D-glucuronide(GAMG)are the typical triterpenoid glycosides found in the root of licorice,a popular medicinal plant that exhibits diverse physiological effects and pharmacological manifestations.However,only few reports are available on the glycosylation enzymes involved in the biosynthesis of these valuable compounds with low conversion yield so far.In mammals,glycosyltransferases are involved in the phase II metabolism and may provide new solutions for us to engineer microbial strains to produce high valued compounds due to the substrate promiscuity of these glycosyltransferases.In this study,we mined the genomic databases of mammals and evaluated 22 candidate genes of O-glycosyltransferases by analyzing their catalytic potential for O-glycosylation of the native substrate,glycyrrhetinic acid(GA)for its glycodiversification.Out of 22 selected glycosyltransferases,only UGT1A1 exhibited high catalytic performance for biosynthesis of the key licorice compounds GL and GAMG.Molecular docking results proposed that the enzymatic activity of UGT1A1 was likely owing to the stable hydrogen bonding interactions and favorite conformations between the amino acid residues around substrate channels(P82~R85)and substrates.Furthermore,the complete biosynthesis pathway of GL was reconstructed in Saccharomyces cerevisiae for the first time,resulting in the production of 5.98±0.47 mg/L and 2.31±0.21 mg/L of GL and GAMG,respectively.展开更多
Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for...Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using sitedirected mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHP04-PGUSl hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid selfassembly. Under optimal conditions, 1.2 mg of a CaHP04- PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g^-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHP04-PGUSl hybrid nanoflower. Moreover, the thermostability of the CaHP04-PGUSl hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHP04-PGUSl hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.展开更多
Objective: Quercetin-3-O-β-D-glucuronide(QG) can alleviate immunological bone marrow failure(BMF) by increasing platelet counts. However, the principal mechanism is less known. This study aimed at deciphering the pos...Objective: Quercetin-3-O-β-D-glucuronide(QG) can alleviate immunological bone marrow failure(BMF) by increasing platelet counts. However, the principal mechanism is less known. This study aimed at deciphering the possible underlying mechanism of QG that is indicated in thrombocytopenic purpura. Methods: In vitro and in vivo experiments were carried out for investigating the mechanism behind QG-facilitated inhibition of mitochondrial pathway-mediated excessive apoptosis of platelets through the phosphatidylinositol-3-kinase(PI3K)/AKT pathway. Results: Our results revealed that QG, the main effective ingredient of Herba Sarcandrae, increases the number of platelets and decreases the expression of Bax, Bad, Bid, and caspase-9 in immunological BMF, indicating the inhibition of mitochondrial pathway-mediated apoptosis. Moreover, we found that the protein and m RNA expressions, as well as the phosphorylated levels of PI3K and AKT, were increased significantly by QG, suggesting the activation of the PI3K/AKT pathway. Furthermore, the inhibition of the PI3K/AKT pathway by LY294002 antagonizes the effects of QG on platelet counts and mitochondrial pathway-mediated apoptosis. Conclusion: We demonstrate that QG inhibits the mitochondria pathway-mediated platelet apoptosis via the PI3K/AKT pathway in immunological BMF. This study thus sheds light on exploring the possible regulatory mechanism of traditional Chinese medicine in the treatment of thrombocytopenia induced by BMF.展开更多
Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Method...Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Methods GL was biotransformed by Aspergillus sp.,the products were separated by chromatography on reverse phase C18 column and semi-preparative HPLC,and their structures were elucidated on the basis of HR-ESI-MS,1D NMR(1H-NMR,13C-NMR,and NOESY) and 2D NMR(1H-1H COSY,HSQC,and HMBC) spectral analyses.Results Aspergillus sp.could partially hydrolyze GL into GAMG(3),along with two minor byproducts,3-O-β-D-glucuronopyranosyl-18β-liquiritic acid(1) and 3-O-β-D-glucuronopyranosyl-24-hydroxy-18β-glycyrrhetinic acid(2).Conclusion Aspergillus sp.has the high selectivity of hydrolyzing GL into GAMG without GA byproduct and the yield of GAMG is about 60%.The complete assignments of 1H-NMR and 13C-NMR data for compounds 1 and 2 are reported for the first time.展开更多
基金Supported by the National Natural Science Foundation of China(21176028 and21506011)the National Science Fund for Distinguished Young Scholars of China(21425624)Doctoral Fund of Ministry of Education of China(20121101110050)
文摘Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32℃, agitation speed 100 r. rain 1), 3.55 g. L^-1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 m190 g-L 1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production: the achieved GL conversion was 95.34% with GAMG yield of 95.15%, and GAMG concentration was 16.62 g. L^-1 which was 5 times higher than that of batch. Then, a two-step separation strat- egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D10I resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.
基金supported by the National Key Research and Development Program of China(2018YFA0901800)the Key Research and Development Program of Hebei Province(21374301D)+2 种基金the Natural Science Foundation of China(No.22078171)the Natural Science Foundation of Hebei Province(No.C2019105055)the Scientific Research Foundation of Tangshan Normal University(No.2021B34).
文摘Glycyrrhizin(GL)and Glycyrrhetic Acid 3-O-mono-β-D-glucuronide(GAMG)are the typical triterpenoid glycosides found in the root of licorice,a popular medicinal plant that exhibits diverse physiological effects and pharmacological manifestations.However,only few reports are available on the glycosylation enzymes involved in the biosynthesis of these valuable compounds with low conversion yield so far.In mammals,glycosyltransferases are involved in the phase II metabolism and may provide new solutions for us to engineer microbial strains to produce high valued compounds due to the substrate promiscuity of these glycosyltransferases.In this study,we mined the genomic databases of mammals and evaluated 22 candidate genes of O-glycosyltransferases by analyzing their catalytic potential for O-glycosylation of the native substrate,glycyrrhetinic acid(GA)for its glycodiversification.Out of 22 selected glycosyltransferases,only UGT1A1 exhibited high catalytic performance for biosynthesis of the key licorice compounds GL and GAMG.Molecular docking results proposed that the enzymatic activity of UGT1A1 was likely owing to the stable hydrogen bonding interactions and favorite conformations between the amino acid residues around substrate channels(P82~R85)and substrates.Furthermore,the complete biosynthesis pathway of GL was reconstructed in Saccharomyces cerevisiae for the first time,resulting in the production of 5.98±0.47 mg/L and 2.31±0.21 mg/L of GL and GAMG,respectively.
基金the National Natural Science Foundation of China (Grant Nos.21425624, 21878021, and 21506011).
文摘Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using sitedirected mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHP04-PGUSl hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid selfassembly. Under optimal conditions, 1.2 mg of a CaHP04- PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g^-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHP04-PGUSl hybrid nanoflower. Moreover, the thermostability of the CaHP04-PGUSl hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHP04-PGUSl hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.
基金supported by the research project of health sciences of Shanghai Jing’an District (2019MS02)Shanghai Bao’shan science and technology commission (18-E-10)+1 种基金the research project of Shanghai municipal commission of health and family planning (201640144,20184Y0094)Shanghai science and technology commission (18401903800)。
文摘Objective: Quercetin-3-O-β-D-glucuronide(QG) can alleviate immunological bone marrow failure(BMF) by increasing platelet counts. However, the principal mechanism is less known. This study aimed at deciphering the possible underlying mechanism of QG that is indicated in thrombocytopenic purpura. Methods: In vitro and in vivo experiments were carried out for investigating the mechanism behind QG-facilitated inhibition of mitochondrial pathway-mediated excessive apoptosis of platelets through the phosphatidylinositol-3-kinase(PI3K)/AKT pathway. Results: Our results revealed that QG, the main effective ingredient of Herba Sarcandrae, increases the number of platelets and decreases the expression of Bax, Bad, Bid, and caspase-9 in immunological BMF, indicating the inhibition of mitochondrial pathway-mediated apoptosis. Moreover, we found that the protein and m RNA expressions, as well as the phosphorylated levels of PI3K and AKT, were increased significantly by QG, suggesting the activation of the PI3K/AKT pathway. Furthermore, the inhibition of the PI3K/AKT pathway by LY294002 antagonizes the effects of QG on platelet counts and mitochondrial pathway-mediated apoptosis. Conclusion: We demonstrate that QG inhibits the mitochondria pathway-mediated platelet apoptosis via the PI3K/AKT pathway in immunological BMF. This study thus sheds light on exploring the possible regulatory mechanism of traditional Chinese medicine in the treatment of thrombocytopenia induced by BMF.
基金National Science & Technology Pillar Program (2011BAI07B02-5)
文摘Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL) into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG) without glycyrrhetinic acid(GA) byproduct.Methods GL was biotransformed by Aspergillus sp.,the products were separated by chromatography on reverse phase C18 column and semi-preparative HPLC,and their structures were elucidated on the basis of HR-ESI-MS,1D NMR(1H-NMR,13C-NMR,and NOESY) and 2D NMR(1H-1H COSY,HSQC,and HMBC) spectral analyses.Results Aspergillus sp.could partially hydrolyze GL into GAMG(3),along with two minor byproducts,3-O-β-D-glucuronopyranosyl-18β-liquiritic acid(1) and 3-O-β-D-glucuronopyranosyl-24-hydroxy-18β-glycyrrhetinic acid(2).Conclusion Aspergillus sp.has the high selectivity of hydrolyzing GL into GAMG without GA byproduct and the yield of GAMG is about 60%.The complete assignments of 1H-NMR and 13C-NMR data for compounds 1 and 2 are reported for the first time.