Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th...Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time.展开更多
Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexi...Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.展开更多
The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the ...The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the main characteristics in the 3-axis flight table servosystem. Based on the description of dynamic and static model of a nonlinear Stribeck frictionmodel, and taking account of the practical uncertainties of 3-axis flight table servo system, theQFT controller is designed. Simulation and realtime results are presented.展开更多
Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force ...Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force sensor with different structures has been proposed to measure the spatial force,there are still some common limitations including the multi-step manufacturing-assembly processes and complicated testing of decoupling calibration.Here,we propose a rapid fabrication strategy with low-cost to achieve high-precision 3-axis force sensors.The sensor is designed to compose of structural Maltese cross base and sensing units.It is directly fabricated within one step by a hybrid 3D printing technology combining deposition modeling(FDM)with direct-ink-writing(DIW).In particular,a machine learning(ML)model is used to convert the strain signal to the force components.Instead of a mount of calibration tests,this ML model is trained by sufficient simulation data based on programmed batch finite element modeling.This sensor is capable of continuously identifying a spatial force with varying magnitude and orientation,which successfully quantify the applied force of traditional Chinese medicine physiotherapy including Gua Sha and massage.This work provides insight for design and rapid fabrication of multi-axis force sensors,as well as potential applications.展开更多
In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous drivi...In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.展开更多
Although tea is grown in agro-ecological regions widely varying in environmental factors affecting yield and quality, planters usually import genetic materials across the different growing regions assuming genotypes w...Although tea is grown in agro-ecological regions widely varying in environmental factors affecting yield and quality, planters usually import genetic materials across the different growing regions assuming genotypes with good quality attributes in one location maintain their status in all regions. However, tea quality has not been replicated in new production regions. Black tea quality is influenced by the green leaf quality precursors including caffeine, total polyphenols and individual flavan-3-ols which are precursors of theaflavins and thearubigins, key plain black tea quality parameters. Factors influencing levels of the precursors compounds have not been quantified for popular Kenyan tea cultivars. The influence of geographical production location and seasons on levels and ratios of the quality precursors for 10 black tea popular clones grown in three locations in Kenya under uniform agronomic inputs were monitored. Caffeine varied significantly (P _〈 0.05) with clones and location but not with season. The flavan-3-ols and their ratios all varied (P 〈 0.05) with clones and site but not with season, with significant interactions (P 〈 0.05) between locations and clones, and locations and seasons. These results explain the observed variations in plain black tea quality due to clones and location of production. Thus, farmers in different locations are unlikely to produce black tea of same quality. It is therefore necessary to evaluate new tea genotypes in intended growing areas to establish cultivars suitable for producing high quality plain black teas in the locations. Seasonal variations in plain black tea in Kenya are unlikely to vary significantly due to flavan-3-ols.展开更多
This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to...This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.展开更多
With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better loca...With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
文摘Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time.
文摘Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.
文摘The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the main characteristics in the 3-axis flight table servosystem. Based on the description of dynamic and static model of a nonlinear Stribeck frictionmodel, and taking account of the practical uncertainties of 3-axis flight table servo system, theQFT controller is designed. Simulation and realtime results are presented.
基金supported by the National Natural Science Foundation of China [12372078]Sixth Phase of Jiangsu Province"333 High Level Talent Training Project"Second Level Talents State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics [MCMS-E-0422G04].
文摘Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force sensor with different structures has been proposed to measure the spatial force,there are still some common limitations including the multi-step manufacturing-assembly processes and complicated testing of decoupling calibration.Here,we propose a rapid fabrication strategy with low-cost to achieve high-precision 3-axis force sensors.The sensor is designed to compose of structural Maltese cross base and sensing units.It is directly fabricated within one step by a hybrid 3D printing technology combining deposition modeling(FDM)with direct-ink-writing(DIW).In particular,a machine learning(ML)model is used to convert the strain signal to the force components.Instead of a mount of calibration tests,this ML model is trained by sufficient simulation data based on programmed batch finite element modeling.This sensor is capable of continuously identifying a spatial force with varying magnitude and orientation,which successfully quantify the applied force of traditional Chinese medicine physiotherapy including Gua Sha and massage.This work provides insight for design and rapid fabrication of multi-axis force sensors,as well as potential applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1011216)。
文摘In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.
文摘Although tea is grown in agro-ecological regions widely varying in environmental factors affecting yield and quality, planters usually import genetic materials across the different growing regions assuming genotypes with good quality attributes in one location maintain their status in all regions. However, tea quality has not been replicated in new production regions. Black tea quality is influenced by the green leaf quality precursors including caffeine, total polyphenols and individual flavan-3-ols which are precursors of theaflavins and thearubigins, key plain black tea quality parameters. Factors influencing levels of the precursors compounds have not been quantified for popular Kenyan tea cultivars. The influence of geographical production location and seasons on levels and ratios of the quality precursors for 10 black tea popular clones grown in three locations in Kenya under uniform agronomic inputs were monitored. Caffeine varied significantly (P _〈 0.05) with clones and location but not with season. The flavan-3-ols and their ratios all varied (P 〈 0.05) with clones and site but not with season, with significant interactions (P 〈 0.05) between locations and clones, and locations and seasons. These results explain the observed variations in plain black tea quality due to clones and location of production. Thus, farmers in different locations are unlikely to produce black tea of same quality. It is therefore necessary to evaluate new tea genotypes in intended growing areas to establish cultivars suitable for producing high quality plain black teas in the locations. Seasonal variations in plain black tea in Kenya are unlikely to vary significantly due to flavan-3-ols.
基金Supported by the National Natural Science Foundation of China(51975281,51705183).
文摘This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.
基金supported by National Natural Science Foundation of China (Grants No.41374056)the Fundamental Research Funds for the Central Universities (WK2080000053)
文摘With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
基金天津中小企业创新基金( the Project Approval Certificate of Innovation Fund for Small and Medium Technology Based Firms No.06zhcxc11600)+2 种基金国家科技型中小企业技术创新基金( Innovation Fund For Technology Based Firms No.07c26211200097)天津市科技计划项目( No.08ZCKFGX01700)