Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
By using the center projection image sequence to estimate 3-D motion parameters,one needs to know the corresponding relationship between the feature of motion object in spaceand the projection coordinate on image plan...By using the center projection image sequence to estimate 3-D motion parameters,one needs to know the corresponding relationship between the feature of motion object in spaceand the projection coordinate on image plane.In order to avoid using the relationship of featurecorrespondence,the tensor analysis method in the affine transformation system is presented,andthe simulation data of experimental results are given.展开更多
Dredging plume dispersion studies, use dredging plume models to predict the fate of sediment plumes resulting from dredging activities and dredge spoil disposal. The model results are applied as input to environmental...Dredging plume dispersion studies, use dredging plume models to predict the fate of sediment plumes resulting from dredging activities and dredge spoil disposal. The model results are applied as input to environmental impact assessment of the proposed dredging, particularly those associated with suspended sediments and sedimentation. Model validation and performance are still not resolved because of the difficulty of site measurements and the understanding of the parameters used in the model. This paper presents a 3-D dredging plume model based on the MIKE3 software package to investigate parameters which affect the model performances. As a result of lack of site data for the public domain uses, the model scenarios are designed artificially for sensitive runs to identify the key parameters affecting plume behaviours. The factors include dredging spill rates using different dredging methods, equipment and sediment settling velocities. The influence of wave and wind effects combined with tidal forces on the sediment re-suspended rates and the advection/dispersion scales are also assessed.展开更多
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将...目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。展开更多
To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est...To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.展开更多
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M...Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM.展开更多
The density-normalized effective ionization coefficient (α - η)/N (α and η are the ionization and attachment coefficients respectively), the electron drift velocity Ve and density- normalized longitudinal diff...The density-normalized effective ionization coefficient (α - η)/N (α and η are the ionization and attachment coefficients respectively), the electron drift velocity Ve and density- normalized longitudinal diffusion coefficient NDL in trifluoromethane (CHF3) and carbon tetraflu- oride (CF4) were measured using a pulsed Townsend technique over a wide E/N range. From the plots of (α- η)/N, we have derived the limiting field strength, (E/N)nm, which is valid for the analysis of insulation characteristics and applications to power equipment. Comparisons of the electron swarms parameters between CHF3 and CFa have been performed, and the global warming potential (GWP) is also taken into account.展开更多
This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that differ...This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.展开更多
An iterative method is used to find the values of the Hamiltonian parameters for Yb^3+ in a given low-symmetry crys- talline site. Samples of Yb^3+ :RETaO4 (RE = Gd, Y, and Sc) were prepared and their structures ...An iterative method is used to find the values of the Hamiltonian parameters for Yb^3+ in a given low-symmetry crys- talline site. Samples of Yb^3+ :RETaO4 (RE = Gd, Y, and Sc) were prepared and their structures were determined. Based on the obtained structural data, their orbital-spin parameters and crystal field parameters were fitted by the superposition model (SM). Using the crystal field parameters obtained by the SM fitting as the initial parameters, the Hamiltonian parameters were fitted iteratively. The calculated and experimental energy levels for Yb^3+:RETaO4 are consistent, and the maximal mean-root-square deviation is only 2.84 cm^- 1, indicating that the method is effective to determine the Hamiltonian parameters of Yb^3+ in low-symmetry crystalline sites.展开更多
A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg-Marquardt, New...A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg-Marquardt, Newton method, and so on, can be used to solve crystal field parameters by fitting to experimental energy levels. With the numerical eigenvalue derivative, a detailed iteration algorithm to compute crystal field parameters by fitting experimental energy levels has also been described. This method is used to compute the crystal parameters of Yb^3+ in Sc2O3 crystal, which is prepared by a co-precipitation method and whose structure was refined by Rietveld method. By fitting on the parameters of a simple overlap model of crystal field, the results show that the new method can fit the crystal field energy splitting with fast convergence and good stability.展开更多
The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 =...The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.展开更多
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer...Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.展开更多
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a...Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.展开更多
It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and...The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature)on the growth and properties(e.g., surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer(XRD), scanning electron microscope(SEM), and ultraviolet-visible spectrophotometer(UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the β-Ga_(2)O_(3) film are influenced by those parameters. All β-Ga_(2)O_(3) films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The I–V curves show that the Ohmic behavior between metal and β-Ga_(2)O_(3) films is obtained at 900℃. Those results will be helpful for the further research of β-Ga_(2)O_(3) photoelectric semiconductor.展开更多
In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by explo...In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by exploiting the 2-D effective methods in 3-D. This method can change the constrained optimization algorithm into the unconstrained one and makes the design easier to realize. The second method is to solve the coupled equations under constrained conditions and a set of ideal parameters can be gotten. The design example shows that the two methods are all efficient and easier than the original algorithm.展开更多
CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas m...CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
文摘By using the center projection image sequence to estimate 3-D motion parameters,one needs to know the corresponding relationship between the feature of motion object in spaceand the projection coordinate on image plane.In order to avoid using the relationship of featurecorrespondence,the tensor analysis method in the affine transformation system is presented,andthe simulation data of experimental results are given.
文摘Dredging plume dispersion studies, use dredging plume models to predict the fate of sediment plumes resulting from dredging activities and dredge spoil disposal. The model results are applied as input to environmental impact assessment of the proposed dredging, particularly those associated with suspended sediments and sedimentation. Model validation and performance are still not resolved because of the difficulty of site measurements and the understanding of the parameters used in the model. This paper presents a 3-D dredging plume model based on the MIKE3 software package to investigate parameters which affect the model performances. As a result of lack of site data for the public domain uses, the model scenarios are designed artificially for sensitive runs to identify the key parameters affecting plume behaviours. The factors include dredging spill rates using different dredging methods, equipment and sediment settling velocities. The influence of wave and wind effects combined with tidal forces on the sediment re-suspended rates and the advection/dispersion scales are also assessed.
文摘目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。
基金Project(CSTC 2010BB4301) supported by Natural Science Foundation Project of Chongqing,ChinaProject supported by the Open Fund for Key Laboratory of Manufacture and Test Techniques for Automobile Parts of Ministry of Education Chongqing University of Technology,2003,China
文摘To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.
基金financially supported by the the National Natural Science Foundation of China(Nos.51801079 and 52001140)the Natural Science Foundation for Young Scientists of Jiangsu,China(Nos.BK20180985 and BK20180987)the Open Foundation of Zhenjiang Key Laboratory for High Technology Research on Marine Functional Films(No.ZHZ2019001)。
文摘Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM.
基金supported by National Natural Science Foundation of China (No. 51177101)
文摘The density-normalized effective ionization coefficient (α - η)/N (α and η are the ionization and attachment coefficients respectively), the electron drift velocity Ve and density- normalized longitudinal diffusion coefficient NDL in trifluoromethane (CHF3) and carbon tetraflu- oride (CF4) were measured using a pulsed Townsend technique over a wide E/N range. From the plots of (α- η)/N, we have derived the limiting field strength, (E/N)nm, which is valid for the analysis of insulation characteristics and applications to power equipment. Comparisons of the electron swarms parameters between CHF3 and CFa have been performed, and the global warming potential (GWP) is also taken into account.
文摘This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90922003,51172236,and 50872135)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1002)
文摘An iterative method is used to find the values of the Hamiltonian parameters for Yb^3+ in a given low-symmetry crys- talline site. Samples of Yb^3+ :RETaO4 (RE = Gd, Y, and Sc) were prepared and their structures were determined. Based on the obtained structural data, their orbital-spin parameters and crystal field parameters were fitted by the superposition model (SM). Using the crystal field parameters obtained by the SM fitting as the initial parameters, the Hamiltonian parameters were fitted iteratively. The calculated and experimental energy levels for Yb^3+:RETaO4 are consistent, and the maximal mean-root-square deviation is only 2.84 cm^- 1, indicating that the method is effective to determine the Hamiltonian parameters of Yb^3+ in low-symmetry crystalline sites.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50772112 and 50872135)the Natural Science Foundation of Anhui Province of China(Grant No.08040106820)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.YYYJ-1002)
文摘A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg-Marquardt, Newton method, and so on, can be used to solve crystal field parameters by fitting to experimental energy levels. With the numerical eigenvalue derivative, a detailed iteration algorithm to compute crystal field parameters by fitting experimental energy levels has also been described. This method is used to compute the crystal parameters of Yb^3+ in Sc2O3 crystal, which is prepared by a co-precipitation method and whose structure was refined by Rietveld method. By fitting on the parameters of a simple overlap model of crystal field, the results show that the new method can fit the crystal field energy splitting with fast convergence and good stability.
基金This work was supported by the National Natural Science Foundation of China (60378031) and Key Project of Science and Technology of Fujian Province (2001H1007)
文摘The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.
文摘Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.
基金supported by National Natural Science Foundation of China (Grant No. 50905094)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044204, Grant No. 2009AA044205)China Postdoctoral Science Foundation (Grant No. 20080440378, Grant No. 200902097)
文摘Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
基金Project supported by the Science and Technology Major Project of Shanxi Province,China (Grant No.20181102013)the “1331 Project” Engineering Research Center of Shanxi Province,China (Grant No.PT201801)the Natural Science Foundation of Shanxi Province,China (Grant No.201801D221131)。
文摘The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature)on the growth and properties(e.g., surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer(XRD), scanning electron microscope(SEM), and ultraviolet-visible spectrophotometer(UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the β-Ga_(2)O_(3) film are influenced by those parameters. All β-Ga_(2)O_(3) films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The I–V curves show that the Ohmic behavior between metal and β-Ga_(2)O_(3) films is obtained at 900℃. Those results will be helpful for the further research of β-Ga_(2)O_(3) photoelectric semiconductor.
文摘In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by exploiting the 2-D effective methods in 3-D. This method can change the constrained optimization algorithm into the unconstrained one and makes the design easier to realize. The second method is to solve the coupled equations under constrained conditions and a set of ideal parameters can be gotten. The design example shows that the two methods are all efficient and easier than the original algorithm.
基金supported by National Natural Science Foundation of China(No.51337006)。
文摘CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.