To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est...To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.展开更多
An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle i...An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle in which a kinematically admissible velocity field is constructed with the lateral flow function as an unknown function. The stress distribution and volume strain distribution are obtained by solving the simultaneous equations formed by the longitudinal differential equation of equilibrium and constitutive equations. The lateral flow function is determined by minimizing the total energy dissipation rate. Experimental investigation was carried out on a reversible cold mill. The front tension stress distributions in cold rolled strips were measured by a multi roll segmented tension sensing shapemeter. The calculated results are in good agreement with the measured ones.展开更多
An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process ...An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.展开更多
Based on experimental data, the mathematical model of rolling force parameters of 3-roll mills was studied. The structure ofthe model was theoretically set up and the coefficients were determined by static analysis of...Based on experimental data, the mathematical model of rolling force parameters of 3-roll mills was studied. The structure ofthe model was theoretically set up and the coefficients were determined by static analysis of the data. The torque in continuous rollingwas measured, and the characteristics and efficiency of 3-roll mills are investigated.展开更多
This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates t...This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates the variation trend of the terrain. Through setting a critical value of sharp degree, feature points are selected. Second, critical mesh points are extracted by an recursive process, and constitute the simplified mesh. Third, the algorithm of linear-square interpolation is employed to restore the characteris- tics of the terrain. Last, the terrain is rendered with color and texture. The experimental results demonstrate that this method can compress data by 16% and the error is lower than 10%.展开更多
The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture ...The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.展开更多
To improve the data quality of converted waves, and better identify and suppress the strong ground-roll interference in three-component (3C) seismic recordings on land, we present an adaptive polarization filtering ...To improve the data quality of converted waves, and better identify and suppress the strong ground-roll interference in three-component (3C) seismic recordings on land, we present an adaptive polarization filtering method, which can effectively separate the ground- roll interference by combining complex polarization and instantaneous polarization analysis. The ground roll noise is characterized by elliptical plane polarization, strong energy, low apparent velocity, and low frequency. After low-pass filtering of the 3C data input within a given time-window of the ground roll, the complex covariance matrix is decomposed using the sliding time window with overlapping data and length that depends on the dominant ground-roll frequency. The ground-roll model is established using the main eigenvectors, and the ground roll is detected and identified using the instantaneous polarization area attributes and average energy constraints of the ground-roll zone. Finally, the ground roll is subtracted. The threshold of the method is stable and easy to select, and offers good ground- roll detection. The method is a robust polarization filtering method. Model calculations and actual data indicate that the method can effectively identify and attenuate ground roll while preserving the effective signals.展开更多
In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation pro...Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver.5.0 code. The important information concerned with the deformation area characteristic, material flow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.展开更多
Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and opt...Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.展开更多
The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation...The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.展开更多
The rolling and recrystallization texture of B2 type Fe3Al based alloys were systematially investigated by ODF. The results showed that the rolling texture consisted of a strong β-fibre close to {111} <uvw> a...The rolling and recrystallization texture of B2 type Fe3Al based alloys were systematially investigated by ODF. The results showed that the rolling texture consisted of a strong β-fibre close to {111} <uvw> and a {001} <110> texture. In annealing process the rolling texture was strengthened at recovery stage and gradually disappeared during primary recrystallization. A strong shear texture was produced by only 20% Pass reduction, indicating that the Fe3Al is sensitive to shear stress. The corresponding room temperature tensile properties were measured. A correlation between texture mode and room temperature mechanical properties was observed.展开更多
An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball ...An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball and a steel rod. The experimental investigation is carried out using a ball-rod RCF test rig. The results show that the extreme pressure additives increase the anti-contact-fatigue performance of ceramic balls; When the content of the additives varies from 1% to 5%, the increasing gradient of the RCF life curve decreases; And the oil sample with 1% T305 additive corresponds to the maximal gradient of the RCF life curve, with the RCF life being increased by about 10.77 times. The fatigue surface of the ceramic ball is analyzed with scanning electron microscope (SEM) and X-ray electron dispersion analysis(EDAX), and the physical model of extreme pressure additives' increasing the RCF life of the ceramic ball is proposed. It is found that the extreme pressure additives form a corrosive film and a transfer film on the surface of the ceramic ball, which decrease the surface tangential stress, and to increase the surface energy is the most effective means for increasing the RCF life.展开更多
Flatness and profile are important quality indexes of strip. Combining the influence function method to solve the elastic deformation of roll system with the variational method to solve the lateral flow of metal, the ...Flatness and profile are important quality indexes of strip. Combining the influence function method to solve the elastic deformation of roll system with the variational method to solve the lateral flow of metal, the flatness and profile of the strip during cold continuous rolling were simulated. The B 3 spline function was used to analogize the lateral distribution of strip thickness. The transverse distributions of the exit thickness and the front tension stress for each pass were obtained. Compared with the measured results, it is proved that using the spline function to analogize the lateral distribution of strip thickness can improve the calculation accuracy of flatness and profile largely.展开更多
A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are ...A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.展开更多
The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test enviro...The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test environments. It has been shown that the ductility in various environments decreases in sequence of oxygen—oil—air—distilled water. The results of X ray diffraction analysis show that (211) preferred orientation of B 2 phase appears in cold rolled Fe 3(Al,Cr,Zr) alloy after recrystallization annealing.展开更多
基金Project(CSTC 2010BB4301) supported by Natural Science Foundation Project of Chongqing,ChinaProject supported by the Open Fund for Key Laboratory of Manufacture and Test Techniques for Automobile Parts of Ministry of Education Chongqing University of Technology,2003,China
文摘To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.
基金granted by China Postdoctoral Science Foundation
文摘An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle in which a kinematically admissible velocity field is constructed with the lateral flow function as an unknown function. The stress distribution and volume strain distribution are obtained by solving the simultaneous equations formed by the longitudinal differential equation of equilibrium and constitutive equations. The lateral flow function is determined by minimizing the total energy dissipation rate. Experimental investigation was carried out on a reversible cold mill. The front tension stress distributions in cold rolled strips were measured by a multi roll segmented tension sensing shapemeter. The calculated results are in good agreement with the measured ones.
基金Item Sponsored by Youth Science Technology Elitist Foundation of Dalian Local Government (2001-122)
文摘An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.
文摘Based on experimental data, the mathematical model of rolling force parameters of 3-roll mills was studied. The structure ofthe model was theoretically set up and the coefficients were determined by static analysis of the data. The torque in continuous rollingwas measured, and the characteristics and efficiency of 3-roll mills are investigated.
基金Supported by the National Natural Science Foundation of China (No.61170005)
文摘This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates the variation trend of the terrain. Through setting a critical value of sharp degree, feature points are selected. Second, critical mesh points are extracted by an recursive process, and constitute the simplified mesh. Third, the algorithm of linear-square interpolation is employed to restore the characteris- tics of the terrain. Last, the terrain is rendered with color and texture. The experimental results demonstrate that this method can compress data by 16% and the error is lower than 10%.
文摘The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.
基金supported by the National Natural Science Foundation of China(No.41074080)the Important National Science&Technology Specific Projects(No.2011ZX05019-008)
文摘To improve the data quality of converted waves, and better identify and suppress the strong ground-roll interference in three-component (3C) seismic recordings on land, we present an adaptive polarization filtering method, which can effectively separate the ground- roll interference by combining complex polarization and instantaneous polarization analysis. The ground roll noise is characterized by elliptical plane polarization, strong energy, low apparent velocity, and low frequency. After low-pass filtering of the 3C data input within a given time-window of the ground roll, the complex covariance matrix is decomposed using the sliding time window with overlapping data and length that depends on the dominant ground-roll frequency. The ground-roll model is established using the main eigenvectors, and the ground roll is detected and identified using the instantaneous polarization area attributes and average energy constraints of the ground-roll zone. Finally, the ground roll is subtracted. The threshold of the method is stable and easy to select, and offers good ground- roll detection. The method is a robust polarization filtering method. Model calculations and actual data indicate that the method can effectively identify and attenuate ground roll while preserving the effective signals.
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金supported by the National Natural Science Foundation of China(No.50675014).
文摘Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver.5.0 code. The important information concerned with the deformation area characteristic, material flow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.
文摘Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.
基金support given by the National Natural Science Foundation of China(No.51275202)
文摘The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.
文摘The rolling and recrystallization texture of B2 type Fe3Al based alloys were systematially investigated by ODF. The results showed that the rolling texture consisted of a strong β-fibre close to {111} <uvw> and a {001} <110> texture. In annealing process the rolling texture was strengthened at recovery stage and gradually disappeared during primary recrystallization. A strong shear texture was produced by only 20% Pass reduction, indicating that the Fe3Al is sensitive to shear stress. The corresponding room temperature tensile properties were measured. A correlation between texture mode and room temperature mechanical properties was observed.
基金This project is supported by State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,China(No.0303).
文摘An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball and a steel rod. The experimental investigation is carried out using a ball-rod RCF test rig. The results show that the extreme pressure additives increase the anti-contact-fatigue performance of ceramic balls; When the content of the additives varies from 1% to 5%, the increasing gradient of the RCF life curve decreases; And the oil sample with 1% T305 additive corresponds to the maximal gradient of the RCF life curve, with the RCF life being increased by about 10.77 times. The fatigue surface of the ceramic ball is analyzed with scanning electron microscope (SEM) and X-ray electron dispersion analysis(EDAX), and the physical model of extreme pressure additives' increasing the RCF life of the ceramic ball is proposed. It is found that the extreme pressure additives form a corrosive film and a transfer film on the surface of the ceramic ball, which decrease the surface tangential stress, and to increase the surface energy is the most effective means for increasing the RCF life.
基金Item Sponsored by National Natural Science Foundation of China(50275130)Provincial Natural Science Foundation of Hebei of China(E200400223)
文摘Flatness and profile are important quality indexes of strip. Combining the influence function method to solve the elastic deformation of roll system with the variational method to solve the lateral flow of metal, the flatness and profile of the strip during cold continuous rolling were simulated. The B 3 spline function was used to analogize the lateral distribution of strip thickness. The transverse distributions of the exit thickness and the front tension stress for each pass were obtained. Compared with the measured results, it is proved that using the spline function to analogize the lateral distribution of strip thickness can improve the calculation accuracy of flatness and profile largely.
文摘A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.
文摘The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test environments. It has been shown that the ductility in various environments decreases in sequence of oxygen—oil—air—distilled water. The results of X ray diffraction analysis show that (211) preferred orientation of B 2 phase appears in cold rolled Fe 3(Al,Cr,Zr) alloy after recrystallization annealing.