Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A tota...This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.展开更多
While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mo...While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mobile navigation and etc., commercial and open source GIS software packages tend to offer 3D-GIS functionalities for their products. On the basis, GIS analysis functions are to provide information with respect to geographical location and by having 3D spatial data as an input, it will give advantages in providing horizontal position information. However, to analyze moving objects (temporal) in 3D seems not an easy task and not fully supported by current GIS platform packages. Previously in two-dimensional (2D) GIS practice, main issue addressed by researchers in managing temporal spatial objects is GIS packages were designed based on hardware and software constraints whereby it should be based on the temporal spatial objects ontology. Nowadays, the trend of managing temporal 3D data is via 3D spatial simulation or animation. This approach will not in assistance for GIS users in conducting spatial queries. Without having a suitable ontology and valid topological data structure for temporal 3D data, it will cause repetitive of temporal data (redundancy) and complications in executing spatial analysis in 3D environment. Therefore this paper focuses on the ontology for managing moving 3D spatial objects (i.e. air pollution, flood). The characteristics of moving objects were reviewed thoroughly by categorizing it based on its different appearances. Moreover, existing methods in managing temporal database were addressed and discussed for its practicalities. Another important aspect in managing temporal 3D objects is the implementation of topological data structures for 3D spatial objects were reviewed. In the last section of this paper it summarized the issues and further ideas towards implementing and managing temporal 3D spatial objects in GIS based on the Geoinformation Ontology (GeO).展开更多
GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage predict...GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage prediction are displayed in 2-D figures and charts, which is incapable of demonstrating the 3-D spatial characteristics of buildings. Taking brick-concrete building as an example, we study the characteristics of building damage, and effectively combine the information of building textures and earthquake damage. Then, we apply Google SketchUp techniques to create building models and display them with seismic damage texture in the ArcGIS Engine software development environment. In this paper we propose a solid idea for 3-D simulation of earthquake damage, which is helpful in earthquake damage prediction, virtual emergency rescue practice and earthquake knowledge education.展开更多
目前盐腔围岩蠕变模拟中计算网格生成多是理想化的,并没有充分利用真实探测数据。针对这些问题,提出了一种新的三维计算模型生成方法。借助HalfEdge数据结构,基于研究区域边界、DEM(digital element model,数字高程模型)和钻井数据,构...目前盐腔围岩蠕变模拟中计算网格生成多是理想化的,并没有充分利用真实探测数据。针对这些问题,提出了一种新的三维计算模型生成方法。借助HalfEdge数据结构,基于研究区域边界、DEM(digital element model,数字高程模型)和钻井数据,构建了研究区域地层三维模型;基于声纳测腔数据构建了盐腔三维模型,并对其进行了拓扑检查与修正;将地层三维模型与盐腔三维模型进行三维空间布尔运算,获取盐腔围岩三维模型;通过对该模型进行三维空间网格离散,得到盐腔围岩四面体网格单元,即数值模拟计算模型。通过该方法构建的三维计算模型,可以为后期盐腔围岩蠕变数值模拟过程提供有效的计算网格,进而可以为盐腔的建造,尤其是安全合理地利用盐腔提供科学依据和技术支持。展开更多
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
文摘This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.
文摘While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mobile navigation and etc., commercial and open source GIS software packages tend to offer 3D-GIS functionalities for their products. On the basis, GIS analysis functions are to provide information with respect to geographical location and by having 3D spatial data as an input, it will give advantages in providing horizontal position information. However, to analyze moving objects (temporal) in 3D seems not an easy task and not fully supported by current GIS platform packages. Previously in two-dimensional (2D) GIS practice, main issue addressed by researchers in managing temporal spatial objects is GIS packages were designed based on hardware and software constraints whereby it should be based on the temporal spatial objects ontology. Nowadays, the trend of managing temporal 3D data is via 3D spatial simulation or animation. This approach will not in assistance for GIS users in conducting spatial queries. Without having a suitable ontology and valid topological data structure for temporal 3D data, it will cause repetitive of temporal data (redundancy) and complications in executing spatial analysis in 3D environment. Therefore this paper focuses on the ontology for managing moving 3D spatial objects (i.e. air pollution, flood). The characteristics of moving objects were reviewed thoroughly by categorizing it based on its different appearances. Moreover, existing methods in managing temporal database were addressed and discussed for its practicalities. Another important aspect in managing temporal 3D objects is the implementation of topological data structures for 3D spatial objects were reviewed. In the last section of this paper it summarized the issues and further ideas towards implementing and managing temporal 3D spatial objects in GIS based on the Geoinformation Ontology (GeO).
基金supported by the Special Fund for the Scientific Research of Seismological Field in 2012 ( 201208018)
文摘GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage prediction are displayed in 2-D figures and charts, which is incapable of demonstrating the 3-D spatial characteristics of buildings. Taking brick-concrete building as an example, we study the characteristics of building damage, and effectively combine the information of building textures and earthquake damage. Then, we apply Google SketchUp techniques to create building models and display them with seismic damage texture in the ArcGIS Engine software development environment. In this paper we propose a solid idea for 3-D simulation of earthquake damage, which is helpful in earthquake damage prediction, virtual emergency rescue practice and earthquake knowledge education.
文摘目前盐腔围岩蠕变模拟中计算网格生成多是理想化的,并没有充分利用真实探测数据。针对这些问题,提出了一种新的三维计算模型生成方法。借助HalfEdge数据结构,基于研究区域边界、DEM(digital element model,数字高程模型)和钻井数据,构建了研究区域地层三维模型;基于声纳测腔数据构建了盐腔三维模型,并对其进行了拓扑检查与修正;将地层三维模型与盐腔三维模型进行三维空间布尔运算,获取盐腔围岩三维模型;通过对该模型进行三维空间网格离散,得到盐腔围岩四面体网格单元,即数值模拟计算模型。通过该方法构建的三维计算模型,可以为后期盐腔围岩蠕变数值模拟过程提供有效的计算网格,进而可以为盐腔的建造,尤其是安全合理地利用盐腔提供科学依据和技术支持。