Objective To study the practical value of 3-dimensional computed tomography on diagnosis of bladder tumor, Methods Fifteen patients with bladder masses were examined by thin-layer computed tomography. The results of 3...Objective To study the practical value of 3-dimensional computed tomography on diagnosis of bladder tumor, Methods Fifteen patients with bladder masses were examined by thin-layer computed tomography. The results of 3-dimensional reconstructed images were compared with the final diagnosis and the pathological stages. Results According to 3-dimensional reconstructed images, among the 15 cases, 12 cases of bladder cancer were diagnosed, and the pathological types were transitional carcinoma. Two cases were diagnosed as benign tumor (leiomyoma), and the other one was colon cancer, which invaded bladder. The accuracy was 100% . The clinical stages were determined. Of the 12 bladder carcinomas,5 was in stage T1, 3 in T2,, 3 in T3 and 1 in T4.The accuracy of staging was up to 83% (10/12) compared with pathological stages. Conclusion The 3-dimensional reconstructed technology may improve the accuracy of staging of bladder carcinoma, and to provide important evidence for surgery options. 3 refs,2 figs.展开更多
This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A tota...This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach...In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.展开更多
Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coeffi...Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.展开更多
We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversi...We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversion using the localized quasi-linear(LQL)approximation followed by the rigorous inversion,if necessary.The LQL inversion serves to provide a fast image of the target.These results are checked by a rigorous update of the domain electric field,allowing a more accurate calculation of the predicted data.If the accuracy is poorer than desired,rigorous inversion follows,using the resulting conductivity distribution and electric field from LQL as a starting model.The rigorous inversion iteratively solves the field and domain equations,converting the non-linear inversion into a series of linear inversions.We test this method on synthetic and field data.The results of the inversion are very encouraging with respect to both the speed and the accuracy of the algorithm,showing this is a useful tool for airborne EM interpretation.展开更多
The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considere...The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB)equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded parameters can not only control the center of the first-order rogue wave,but also control the number of the wave peaks split from higher-order rogue waves and the asymmetry of higher-order rogue waves about the coordinate axes.The main novelty of this paper is that the obtained results and findings can provide useful supplements to the method used and the controllability of higher-order rogue waves.展开更多
The paper investigates the multiple rogue wave solutions associated with the generalized Hirota-Satsuma-Ito(HSI)equation and the newly proposed extended(3+1)-dimensional Jimbo-Miwa(JM)equation with the help of a symbo...The paper investigates the multiple rogue wave solutions associated with the generalized Hirota-Satsuma-Ito(HSI)equation and the newly proposed extended(3+1)-dimensional Jimbo-Miwa(JM)equation with the help of a symbolic computation technique.By incorporating a direct variable trans-formation and utilizing Hirota’s bilinear form,multiple rogue wave structures of different orders are ob-tained for both generalized HSI and JM equation.The obtained bilinear forms of the proposed equations successfully investigate the 1st,2nd and 3rd-order rogue waves.The constructed solutions are verified by inserting them into original equations.The computations are assisted with 3D graphs to analyze the propagation dynamics of these rogue waves.Physical properties of these waves are governed by different parameters that are discussed in details.展开更多
In this paper,we give the general interaction solution to the(3+1)-dimensional Jimbo–Miwa equation.The general interaction solution contains the classical interaction solution.As an example,by using the generalized b...In this paper,we give the general interaction solution to the(3+1)-dimensional Jimbo–Miwa equation.The general interaction solution contains the classical interaction solution.As an example,by using the generalized bilinear method and symbolic computation by using Maple software,novel interaction solutions under certain constraints of the(3+1)-dimensional Jimbo–Miwa equation are obtained.Via three-dimensional plots,contour plots and density plots with the help of Maple,the physical characteristics and structures of these waves are described very well.These solutions greatly enrich the exact solutions to the(3+1)-dimensional Jimbo–Miwa equation found in the existing literature.展开更多
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation w...In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.展开更多
Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell pol...Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.展开更多
Acoustic rhinometry could numerically describe up- per airway condition of air draft by drawing a graph plotting the distance from the nostril vs. the cross-sectional area. Some decreases on the graph correspond to th...Acoustic rhinometry could numerically describe up- per airway condition of air draft by drawing a graph plotting the distance from the nostril vs. the cross-sectional area. Some decreases on the graph correspond to the typical anatomic structures of human nasal cavity. The 3-dimensional, computing fluid dynamic model of the same person was developed based on computed tomography scans. The veracity of the CFD model was valued by contrasting the relevant areas of stenosis site between the model and the AR graph. The aim in this study is to make clear how to use an AR to help improve and enrich the CFD model with the information of graph acquired from the measurement. The combination of AR and CT can be used to establish a living human nasal cavity model with higher significant information content.展开更多
Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibilit...Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibility of solving some intractable problems. In the proposed procedure,vertex building blocks consisting of 3,4-armed branched junction molecules are selectively used to form different graph structures. After separating these graph structures by gel electrophoresis,the connec-tivity of this graph can be determined. Furthermore,the amount of potential solutions can be reduced by a theorem of graph theory.展开更多
The photons & the quantum particles display several mysterious Quantum Phenomena which could not be explained earlier. The New Quantum Theory explains not only the long pending Wave Particle Duality but also all o...The photons & the quantum particles display several mysterious Quantum Phenomena which could not be explained earlier. The New Quantum Theory explains not only the long pending Wave Particle Duality but also all other mysterious Quantum Phenomena. The New Quantum Theory is based on the analogy of the atoms & the solar system and not only supplements but also completes the Quantum Theory. This work explains “how & why” a photon, an electron or quanta generates the electric & the magnetic fields of continuously varying intensities & in the changing directions to form a 3-D Electromagnetic wave. The electromagnetic fields generated by the photons/quantum particles interact with the electromagnetic fields of the mediums (conductor, semicon-ductor or insulator etc.) to display several mysterious Quantum Phenomena. These interactions are strong enough to change the spin, wavelength, amplitude & direction of the quantum particles in the medium. The spin-orbit interlocking/interactions, transverse spin, vortex spin texture & evanescent waves etc. are the results of such interactions. This work explains some of the quantum phenomena in brief so that the various Quantum Phenomena can be modified & developed for the different applications.展开更多
Aim:The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin(99mTc-GSA)scin...Aim:The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin(99mTc-GSA)scintigraphy/vascular fusion imaging using SYNAPSE VINCENT and to examine the discrepancy between conventional and functional volumetry.Methods:The study group comprised 15 patients who underwent preoperative 3-dimensional(3D)-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT software before hepatectomy between July 2014 and August 2015.The diagnosis was hepatocellular carcinoma(n=4),metastatic liver tumor(n=10),or intrahepatic cholangiocarcinoma(n=1).Right hepatectomy was performed in 2 patients,left hepatectomy in 3 patients,right posterior sectionectomy in 3 patients,segmentectomy in 2 patients,and partial hepatectomy in 4 patients.99mTc-GSA scintigraphy and computed tomography(CT)were performed to construct 3D-99mTc-GSA scintigraphy/vascular fused images.The conventional volume ratio of the planned resection region without tumor(%CT),and the functional volume ratio of the planned resection region without tumor(%GSA)were calculated.The discrepancy ratio was calculated as follows:discrepancy ratio=100-%GSA/%CT×100(%).Results:The%GSA(17.9±16.7%)was significantly lower than the%CT(21.5±17.6%)(P<0.036).In all except 2 patients,the%GSA was lower than the%CT.The discrepancy ratio ranged from-4%to 75%(median,20.7%).Conclusion:3D-99mTc-GSA scintigraphy/vascular fused images constructed using SYNAPSE VINCENT were useful for noninvasively performing functional liver volumetry in patients scheduled to undergo various patterns of hepatectomy.In planned resection regions without tumor,the functional volume ratio was about 20%lower than the conventional volume ratio.展开更多
文摘Objective To study the practical value of 3-dimensional computed tomography on diagnosis of bladder tumor, Methods Fifteen patients with bladder masses were examined by thin-layer computed tomography. The results of 3-dimensional reconstructed images were compared with the final diagnosis and the pathological stages. Results According to 3-dimensional reconstructed images, among the 15 cases, 12 cases of bladder cancer were diagnosed, and the pathological types were transitional carcinoma. Two cases were diagnosed as benign tumor (leiomyoma), and the other one was colon cancer, which invaded bladder. The accuracy was 100% . The clinical stages were determined. Of the 12 bladder carcinomas,5 was in stage T1, 3 in T2,, 3 in T3 and 1 in T4.The accuracy of staging was up to 83% (10/12) compared with pathological stages. Conclusion The 3-dimensional reconstructed technology may improve the accuracy of staging of bladder carcinoma, and to provide important evidence for surgery options. 3 refs,2 figs.
文摘This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11041003)the Ningbo Natural Science Foundation, China (Grant No. 2009B21003)K.C. Wong Magna Fund in Ningbo University, China
文摘In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505154,11605156,11775146,and 11975204)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ16A010003 and LY19A050003)+5 种基金the China Scholarship Council(Grant No.201708330479)the Foundation for Doctoral Program of Zhejiang Ocean University(Grant No.Q1511)the Natural Science Foundation(Grant No.DMS-1664561)the Distinguished Professorships by Shanghai University of Electric Power(China)North-West University(South Africa)King Abdulaziz University(Saudi Arabia)
文摘Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.
文摘We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversion using the localized quasi-linear(LQL)approximation followed by the rigorous inversion,if necessary.The LQL inversion serves to provide a fast image of the target.These results are checked by a rigorous update of the domain electric field,allowing a more accurate calculation of the predicted data.If the accuracy is poorer than desired,rigorous inversion follows,using the resulting conductivity distribution and electric field from LQL as a starting model.The rigorous inversion iteratively solves the field and domain equations,converting the non-linear inversion into a series of linear inversions.We test this method on synthetic and field data.The results of the inversion are very encouraging with respect to both the speed and the accuracy of the algorithm,showing this is a useful tool for airborne EM interpretation.
基金supported by Liaoning Bai Qian Wan Talents Program of China(LRS2020[78])the Natural Science Foundation of Education Department of Liaoning Province of China(LJ2020002)the National Natural Science Foundation of China(11547005)
文摘The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB)equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded parameters can not only control the center of the first-order rogue wave,but also control the number of the wave peaks split from higher-order rogue waves and the asymmetry of higher-order rogue waves about the coordinate axes.The main novelty of this paper is that the obtained results and findings can provide useful supplements to the method used and the controllability of higher-order rogue waves.
文摘The paper investigates the multiple rogue wave solutions associated with the generalized Hirota-Satsuma-Ito(HSI)equation and the newly proposed extended(3+1)-dimensional Jimbo-Miwa(JM)equation with the help of a symbolic computation technique.By incorporating a direct variable trans-formation and utilizing Hirota’s bilinear form,multiple rogue wave structures of different orders are ob-tained for both generalized HSI and JM equation.The obtained bilinear forms of the proposed equations successfully investigate the 1st,2nd and 3rd-order rogue waves.The constructed solutions are verified by inserting them into original equations.The computations are assisted with 3D graphs to analyze the propagation dynamics of these rogue waves.Physical properties of these waves are governed by different parameters that are discussed in details.
基金Supported by the National Natural Science Foundation of China(11661060)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-20-A06)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2018LH01013).
文摘In this paper,we give the general interaction solution to the(3+1)-dimensional Jimbo–Miwa equation.The general interaction solution contains the classical interaction solution.As an example,by using the generalized bilinear method and symbolic computation by using Maple software,novel interaction solutions under certain constraints of the(3+1)-dimensional Jimbo–Miwa equation are obtained.Via three-dimensional plots,contour plots and density plots with the help of Maple,the physical characteristics and structures of these waves are described very well.These solutions greatly enrich the exact solutions to the(3+1)-dimensional Jimbo–Miwa equation found in the existing literature.
基金Supported by the National Natural Science Foundation of China(11471004,11501498)Shaanxi Key Research and Development Programs(2018SF-251)the Research Project at Yuncheng University [XK2012007]
文摘In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.
基金Supported by the National Natural Science Foundation of China under Grant No.11272023the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)under Grant No.IPOC2013B008the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.
文摘Acoustic rhinometry could numerically describe up- per airway condition of air draft by drawing a graph plotting the distance from the nostril vs. the cross-sectional area. Some decreases on the graph correspond to the typical anatomic structures of human nasal cavity. The 3-dimensional, computing fluid dynamic model of the same person was developed based on computed tomography scans. The veracity of the CFD model was valued by contrasting the relevant areas of stenosis site between the model and the AR graph. The aim in this study is to make clear how to use an AR to help improve and enrich the CFD model with the information of graph acquired from the measurement. The combination of AR and CT can be used to establish a living human nasal cavity model with higher significant information content.
基金Supported by the National Natural Science Foundation of China (No.30370356 and No.60574041).
文摘Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibility of solving some intractable problems. In the proposed procedure,vertex building blocks consisting of 3,4-armed branched junction molecules are selectively used to form different graph structures. After separating these graph structures by gel electrophoresis,the connec-tivity of this graph can be determined. Furthermore,the amount of potential solutions can be reduced by a theorem of graph theory.
文摘The photons & the quantum particles display several mysterious Quantum Phenomena which could not be explained earlier. The New Quantum Theory explains not only the long pending Wave Particle Duality but also all other mysterious Quantum Phenomena. The New Quantum Theory is based on the analogy of the atoms & the solar system and not only supplements but also completes the Quantum Theory. This work explains “how & why” a photon, an electron or quanta generates the electric & the magnetic fields of continuously varying intensities & in the changing directions to form a 3-D Electromagnetic wave. The electromagnetic fields generated by the photons/quantum particles interact with the electromagnetic fields of the mediums (conductor, semicon-ductor or insulator etc.) to display several mysterious Quantum Phenomena. These interactions are strong enough to change the spin, wavelength, amplitude & direction of the quantum particles in the medium. The spin-orbit interlocking/interactions, transverse spin, vortex spin texture & evanescent waves etc. are the results of such interactions. This work explains some of the quantum phenomena in brief so that the various Quantum Phenomena can be modified & developed for the different applications.
文摘Aim:The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin(99mTc-GSA)scintigraphy/vascular fusion imaging using SYNAPSE VINCENT and to examine the discrepancy between conventional and functional volumetry.Methods:The study group comprised 15 patients who underwent preoperative 3-dimensional(3D)-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT software before hepatectomy between July 2014 and August 2015.The diagnosis was hepatocellular carcinoma(n=4),metastatic liver tumor(n=10),or intrahepatic cholangiocarcinoma(n=1).Right hepatectomy was performed in 2 patients,left hepatectomy in 3 patients,right posterior sectionectomy in 3 patients,segmentectomy in 2 patients,and partial hepatectomy in 4 patients.99mTc-GSA scintigraphy and computed tomography(CT)were performed to construct 3D-99mTc-GSA scintigraphy/vascular fused images.The conventional volume ratio of the planned resection region without tumor(%CT),and the functional volume ratio of the planned resection region without tumor(%GSA)were calculated.The discrepancy ratio was calculated as follows:discrepancy ratio=100-%GSA/%CT×100(%).Results:The%GSA(17.9±16.7%)was significantly lower than the%CT(21.5±17.6%)(P<0.036).In all except 2 patients,the%GSA was lower than the%CT.The discrepancy ratio ranged from-4%to 75%(median,20.7%).Conclusion:3D-99mTc-GSA scintigraphy/vascular fused images constructed using SYNAPSE VINCENT were useful for noninvasively performing functional liver volumetry in patients scheduled to undergo various patterns of hepatectomy.In planned resection regions without tumor,the functional volume ratio was about 20%lower than the conventional volume ratio.