Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtai...Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity ...As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.展开更多
The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, whic...The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.展开更多
A 3D femoral model was built to obtain the three-dimensional temperature distribution of femur and its surrounding tissues and provide references for clinical applications. According to the relationship between gray-v...A 3D femoral model was built to obtain the three-dimensional temperature distribution of femur and its surrounding tissues and provide references for clinical applications. According to the relationship between gray-value and material properties,the model was assigned with various materials to make sure that it is more similar to the real femur in geometry and physical properties. 3D temperature distribution is obtained by using finite element analysis software ANSYS 11. 0 on the basis of heat conduction theory,Laplace equation,Pennes bio-heat transfer equation,thermo physical parameters of bone tissues,the boundary condition,and initial conditions. Taken the asymmetry of the 3D distribution of temperature into account,it is necessary to adopt the heating method with multiple heat sources. This method can ensure that the temperature fields match well with the tumor tissues and kill the tumor cells efficiently under the condition of protecting the normal tissues from damage. The analysis results supply important guidance for determining the needle position and the needle number and controlling the intensity of heating.展开更多
A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and si...A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.展开更多
The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The uneve...The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstracture of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalem stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors Theresuits obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
文摘Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
文摘As a common practice,a large hydro-generator will operate in leading phase conditions to absorb the reactive power of the power grid.However,the accurate and precise prediction of the leading phase operation capacity of a large hydro-generator has always been a formidable challenge to engineers and academicians because it is extremely hard to compute the eddy currents and losses as well as the local overheating in the pressure plate and finger.To address this problem,a full three dimensional(3D)finite element model and method of the coupled eddy current and temperature fields in the end region of a large hydro-generator are developed.The equivalent medium parameters used in the computations are comprehensively discussed.Moreover,some numerically based solution methodologies for accurate computation of the field and armature currents under different leading phase conditions are proposed.Numerical results on the coupled eddy current and temperature fields in the end regions of a 250 MW hydro-generator confirm positively the feasibility of the present work.
基金Project Supported by National Nature Science Foundation of China (50578034) Science and Technology Development Foundation ofDonghua University
文摘The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61272387)the Program for New Century Excellent Talents in University(Grant No.NCET-13-0756)the Distinguished Young Scientists Funds of Heilongjiang Province(Grant No.JC201302)
文摘A 3D femoral model was built to obtain the three-dimensional temperature distribution of femur and its surrounding tissues and provide references for clinical applications. According to the relationship between gray-value and material properties,the model was assigned with various materials to make sure that it is more similar to the real femur in geometry and physical properties. 3D temperature distribution is obtained by using finite element analysis software ANSYS 11. 0 on the basis of heat conduction theory,Laplace equation,Pennes bio-heat transfer equation,thermo physical parameters of bone tissues,the boundary condition,and initial conditions. Taken the asymmetry of the 3D distribution of temperature into account,it is necessary to adopt the heating method with multiple heat sources. This method can ensure that the temperature fields match well with the tumor tissues and kill the tumor cells efficiently under the condition of protecting the normal tissues from damage. The analysis results supply important guidance for determining the needle position and the needle number and controlling the intensity of heating.
基金Supported by the National Natural Science Foundation of China(52005500)Foundation of Tianjin Educational Committee(2018KJ242)Basic Science-Research Funds of National University(3122019088)。
文摘A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.
基金supported by the Aeronautical Science Foundation of China(No.02H53061)the National Science Found of China for Distinguished Young Scholar(No.50225518)the Shaan'xi Provincial Natural Science Foundation of China(No.2001CS0401)
文摘The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstracture of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalem stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors Theresuits obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.