This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this resear...This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.展开更多
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.Th...A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.The center of mass of the body is considered as eccentric with respect to its geometric center.As seismic input,three Italian recorded accelerograms,with different spectral content,are used.The study is mainly conducted to highlight the differences between the seismic response of 2D and 3D models of rigid blocks,with the aim to understand if,in some cases,the use of the 3D model of rigid block is required to obtain safer results.In fact,the outcomes show that in some ranges of the geometrical and mechanical parameters that characterize the excitation and the body,a two-dimensional model,which is not able to consider the 3D rocking on a vertex,can provide unsafe results.In particular,it is found that the overturning process of the three-dimensional block can occur under excitations which are lower than those which overturn a corresponding two-dimensional block.展开更多
Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying me...Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying methods, an integrated methodology framework was proposed and realized to analyze the stability of surface blocks in rock slopes. The surface blocks cut by geological structures, fissures or free faces could be identified subjected to the four principles of closure, completeness, uniqueness and validity. The factor of safety(FOS)of single key block was calculated by the limit equilibrium method. If there were two or more connected blocks, they were defined as a block-group. The FOS of a block-group was computed by the Sarma method. The proposed approach was applied to an actual rock slope of a hydropower project, and some possible instable blocks were demonstrated and analyzed visually. The obtained results on the key blocks or block-groups provide essential information for determining potential instable region of rock slopes and designing effective support scheme in advance.展开更多
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
A 3-phase a.c. arc plasma reactor with large volume plasma has been developed for the synthesis of new carbon nano-structures. One of the main characteristics of the plasma system is related to the absence of a fixed ...A 3-phase a.c. arc plasma reactor with large volume plasma has been developed for the synthesis of new carbon nano-structures. One of the main characteristics of the plasma system is related to the absence of a fixed neutral point. This gives rise to a rich and complex phenomenology related to instabilities and arc motion since the arcs are "burning" freely in the gas flow between the three electrodes. This paper is dedicated to the analysis of the behavior of such a system under typical conditions using argon and nitrogen as plasma gases. A classification of are configuration, arc commutating, arc interaction, arc motion and arc instabilities are discussed based on ultra high-speed cine camera analysis. A simple model describing the time evolution of the system is also presented and compared with the experimental measurements. The results show that an adequate control could allow the improvement of the overall system.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland base...The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland basement uplifts of late Miocene age.In order to analyze the geochronological evolution of the Quaternary volcanism in the region,several geologic and geophysical studies have been conducted.Nevertheless,the crust,where the SRB is located,has not been well characterized yet.Based on gravimetric and magnetic data,together with isostatic and elastic thickness analyses,we modeled the crustal structure of the area.Information obtained has allowed us to understand the crust where the SRB and the Payenia volcanic province are located.Bouguer anomalies indicate that the SRB presents higher densities to the North of Cerro Nevado and Moho calculations suggest depths for this block between 40 and 50 km.Determinations of elastic thickness would indicate that the crust supporting the San Rafael Block presents values of approximately 10 km,being enough to support the block loading.However,in the Payenia region,elastic thickness values are close to zero due to the regional temperature increase.展开更多
Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as hei...Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.展开更多
A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which wer...A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.展开更多
A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummut...A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummutual inductance between phase windimp to make design of control circuit easier, and application proved it is as good as expected.展开更多
In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) ...In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles.The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface,and the quantity of the functional groups increases with the treatment voltage.Furthermore,the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated.The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma.It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted,which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix.Besides,the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 k V exhibits a lower water contact angle(≈68.4°) compared with the unmodified one(≈86.7°).Meanwhile,the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.展开更多
There are significantly different origins and mineralizations among various lithium-rich brines of the world.As for Clayton Valley,Nevada,the data and interpretations recently presented suggest that the model
The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose a...The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose and localize faults in the rectifier,this paper proposes a frequencydomain analysis-based fault diagnosis algorithm for the rectifier in AGPS.First,time-domain expressions and spectral characteristics of the output voltage of the TPTL-NPC inverter-based power supply are analyzed.Then,frequency-domain analysis-based fault diagnosis and frequency-domain analysis-based sub-fault diagnosis algorithms are proposed to diagnose open circuit(OC) faults of diode(s),which benefit from the analysis of harmonics magnitude and phase-angle of the output voltage.Only a fundamental period is needed to diagnose and localize exact faults,and a strong Variable-duration Fault Detection Method is proposed to identify acceptable ripple from OC faults.Detailed simulations and experimental results demonstrate the effectiveness,quickness,and robustness of the proposed algorithms,and the diagnosis algorithms proposed in this article provide a significant method for the fault diagnosis of other rectifiers and converters.展开更多
文摘This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
基金partially funded by FY 2009-2010 PRIN–Italian Ministry for Research
文摘A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.The center of mass of the body is considered as eccentric with respect to its geometric center.As seismic input,three Italian recorded accelerograms,with different spectral content,are used.The study is mainly conducted to highlight the differences between the seismic response of 2D and 3D models of rigid blocks,with the aim to understand if,in some cases,the use of the 3D model of rigid block is required to obtain safer results.In fact,the outcomes show that in some ranges of the geometrical and mechanical parameters that characterize the excitation and the body,a two-dimensional model,which is not able to consider the 3D rocking on a vertex,can provide unsafe results.In particular,it is found that the overturning process of the three-dimensional block can occur under excitations which are lower than those which overturn a corresponding two-dimensional block.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51321065)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0404)
文摘Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying methods, an integrated methodology framework was proposed and realized to analyze the stability of surface blocks in rock slopes. The surface blocks cut by geological structures, fissures or free faces could be identified subjected to the four principles of closure, completeness, uniqueness and validity. The factor of safety(FOS)of single key block was calculated by the limit equilibrium method. If there were two or more connected blocks, they were defined as a block-group. The FOS of a block-group was computed by the Sarma method. The proposed approach was applied to an actual rock slope of a hydropower project, and some possible instable blocks were demonstrated and analyzed visually. The obtained results on the key blocks or block-groups provide essential information for determining potential instable region of rock slopes and designing effective support scheme in advance.
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
基金supported by National Natural Science Foundation of China (No. 10375065)Anhui Natural Science Foundation (03045102)+1 种基金Europeam Commission projects NanoComp HPRN-CR-2000-0037PlasmaCarb G5RD-CT-1999-00173
文摘A 3-phase a.c. arc plasma reactor with large volume plasma has been developed for the synthesis of new carbon nano-structures. One of the main characteristics of the plasma system is related to the absence of a fixed neutral point. This gives rise to a rich and complex phenomenology related to instabilities and arc motion since the arcs are "burning" freely in the gas flow between the three electrodes. This paper is dedicated to the analysis of the behavior of such a system under typical conditions using argon and nitrogen as plasma gases. A classification of are configuration, arc commutating, arc interaction, arc motion and arc instabilities are discussed based on ultra high-speed cine camera analysis. A simple model describing the time evolution of the system is also presented and compared with the experimental measurements. The results show that an adequate control could allow the improvement of the overall system.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
文摘The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland basement uplifts of late Miocene age.In order to analyze the geochronological evolution of the Quaternary volcanism in the region,several geologic and geophysical studies have been conducted.Nevertheless,the crust,where the SRB is located,has not been well characterized yet.Based on gravimetric and magnetic data,together with isostatic and elastic thickness analyses,we modeled the crustal structure of the area.Information obtained has allowed us to understand the crust where the SRB and the Payenia volcanic province are located.Bouguer anomalies indicate that the SRB presents higher densities to the North of Cerro Nevado and Moho calculations suggest depths for this block between 40 and 50 km.Determinations of elastic thickness would indicate that the crust supporting the San Rafael Block presents values of approximately 10 km,being enough to support the block loading.However,in the Payenia region,elastic thickness values are close to zero due to the regional temperature increase.
文摘Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.
文摘A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.
文摘A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummutual inductance between phase windimp to make design of control circuit easier, and application proved it is as good as expected.
基金financial support from the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No.Sklpme2015-4-24)the Provincial Department of Education Science General Foundation of Liaoning (Contract No.L2015017)
文摘In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles.The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface,and the quantity of the functional groups increases with the treatment voltage.Furthermore,the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated.The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma.It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted,which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix.Besides,the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 k V exhibits a lower water contact angle(≈68.4°) compared with the unmodified one(≈86.7°).Meanwhile,the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
基金the Institute of Mineral Deposit Resources, the Chinese Academy of Geological Sciences in Beijing for the Strategic Tri-Rare Metals project support
文摘There are significantly different origins and mineralizations among various lithium-rich brines of the world.As for Clayton Valley,Nevada,the data and interpretations recently presented suggest that the model
基金supported by the National Key R&D Program of China(No.2017YFE0300104)National Natural Science Foundation of China(No.51821005)
文摘The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose and localize faults in the rectifier,this paper proposes a frequencydomain analysis-based fault diagnosis algorithm for the rectifier in AGPS.First,time-domain expressions and spectral characteristics of the output voltage of the TPTL-NPC inverter-based power supply are analyzed.Then,frequency-domain analysis-based fault diagnosis and frequency-domain analysis-based sub-fault diagnosis algorithms are proposed to diagnose open circuit(OC) faults of diode(s),which benefit from the analysis of harmonics magnitude and phase-angle of the output voltage.Only a fundamental period is needed to diagnose and localize exact faults,and a strong Variable-duration Fault Detection Method is proposed to identify acceptable ripple from OC faults.Detailed simulations and experimental results demonstrate the effectiveness,quickness,and robustness of the proposed algorithms,and the diagnosis algorithms proposed in this article provide a significant method for the fault diagnosis of other rectifiers and converters.