3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribos...3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.展开更多
Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanism...Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.展开更多
基金Supported by National Research Foundation of Korea grant funded by the Korea Government (MEST),No.2010-0001356Supported by a grant from the National R and D Program for Cancer Control funded by Ministry of Health and Welfare,Republic of Korea,No.0720560
文摘3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.
基金This work was supported by grants from the NSFC Shandong Joint Fund(Grant No.U1606403)the National Natural Science Foundation of China(Grant No.81673450)+4 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.82030074)the NSFC-Shandong Joint Fund(Grant No.U1906212)the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ02)the National Science and Technology Major Project for Significant New Drugs Development(Grant No.2018ZX09735-004)the Shandong Provincial Natural Science Foundation(major basic research projects,Grant No.ZR2019ZD18).
文摘Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.