MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulati...Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulating tran-scriptional reprogramming.The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver(FLS)and reveal their effect on hepatic transcriptional reprogramming in laying hens.Results Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposi-tion as well as higher total triglyceride and cholesterol in serum.A/B compartment switching,topologically associat-ing domain(TAD)and chromatin loop changes are identified by high-throughput/resolution chromosome conforma-tion capture(HiC)technology.Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage.H3K27ac differential peaks and differential expres-sion genes(DEGs)identified through RNA-seq analysis are also enriched in these pathways.Notably,certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters.DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogram-ming.Furthermore,disturbed folate metabolism is observed,as evidenced by lower folate levels and altered enzyme expression.Conclusion Our findings establish a link between transcriptional reprogramming changes and 3D chromatin struc-ture variations during early FLS formation,which provides candidate transcription factors and folate as targets for FLS prevention or treatment.展开更多
Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer...Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer from weak cell-scaffold interactions and insufficient cell organizations due to the limited resolution of the 3D-printed features.Here,composite scaffolds with mechanically-robust frameworks and aligned nanofibrous architectures are presented and hybrid manufactured by combining techniques of 3D printing,electrospinning,and unidirectional freeze-casting.It was found that the composite scaffolds provided volume-stable environments and enabled directed cellular infiltration for tissue regeneration.In particular,the nanofibrous architectures with aligned micropores served as artificial extracellular matrix materials and improved the attachment,proliferation,and infiltration of cells.The proposed scaffolds can also support the adipogenic maturation of adipose-derived stem cells(ADSCs)in vitro.Moreover,the composite scaffolds were found to guide directed tissue infiltration and promote nearby neovascularization when implanted into a subcutaneous model of rats,and the addition of ADSCs further enhanced their adipogenic potential.The presented hybrid manufacturing strategy might provide a promising way to produce additional topological cues within 3D-printed scaffolds for better tissue regeneration.展开更多
With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to res...With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.展开更多
Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution...Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution of S and its discharged products hinder their practical applications.MXenes have metallic conductivity,ultra-thin two-dimensional(2D)structures,rich surface functional groups,and macrostructural adjustability and have been widely used to design advanced sulfur hosts.3D network structures assembled by 2D MXene nanosheets have shown superior performance for improving reaction kinetics,accommodating and dispersing sulfur at the micro-/nanoscale,and capturing polysulfides due to their porous interconnected structure.Herein,the applications of MXene architectures related to 2D layered structures,3D multilayered structures,and 3D spherical structures as sulfur hosts are reviewed.The structure-performance relationship,challenges for current designs,and opportunities for future 3D architectures for LSBs are also analyzed.展开更多
Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to...Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to develop service models and architectures for B3G system. A three-dimension service model is proposed. The dimensions are identified as service support scope, service capability definition, and adaptive feature elements. Then, the hierarchical service architecture for B3G is introduced. The enabling technologies for B3G service architecture are discussed in this paper, such as Virtual Home Environment (VHE), service support environment, service openness, distributed computing, intelligent technology, and profile.展开更多
The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is be...The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.展开更多
Yongle atoll in the Xisha(Paracel) Archipelago is an isolated carbonate platform developed on Precambrian metamorphic and Mesozoic volcanic rocks since the early Miocene. To identify the 3D stratigraphic architecture ...Yongle atoll in the Xisha(Paracel) Archipelago is an isolated carbonate platform developed on Precambrian metamorphic and Mesozoic volcanic rocks since the early Miocene. To identify the 3D stratigraphic architecture and evolution of this platform, 13 high-resolution seismic profiles and shallow-to-deep water multi-beam data were processed and analyzed to reveal seismic facies, sequence boundary reflectors, seismic units, and platform architecture. Nine types of seismic facies were recognized based on their geometry, which included seismic amplitude, continuity, and termination patterns;additionally, six reflections, i.e., Tg, T60, T50, T40, T30, and T20, were identified in the Cenozoic strata. Five seismic units, SQ1(lower Miocene), SQ2(middle Miocene), SQ3(upper Miocene), SQ4(Pliocene), and SQ5(Quaternary), were identified from bottom to top across the platform. The platform grew rapidly in the middle Miocene and backstepped in the late Miocene–Pliocene. Here, we discuss the developmental characteristics and evolution of the Yongle Atoll, in combination with drilling wells, which can be divided into four stages: the initiation stage in the early Miocene, the flourishing stage in the middle Miocene, the partial-drowning stage in the late Miocene–Pliocene, and modern atoll in the Quaternary.展开更多
We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (...We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (CC) with specific (104) facet exposure. The highly exposed (104) facets provide abundant unsaturated Fe atoms with dangling bonds as nitrogen reduction reaction catalytically active sites. In addition, the NAs architecture enables the enhanced electrochemical surface area (ECSA) to fully manifest the active sites and maintain the mass diffusion. Thus, the selectively exposed (104) facets coupled with the high ECSA of NAs architecture achieve a high FE of 14.89% and a high yield rate of 17.28 μg h^(-1) cm^(-2). This work presents an effective strategy to develop highly efficient catalytic electrodes for electrochemical NRR via facet regulation and nanoarray architecture.展开更多
The research deal with the reconstruction through digital 3D CAAD (Computer Aided Architectural Design) modeling of masterpieces of modem and contemporary architecture. The charm of reconstruction through digital mo...The research deal with the reconstruction through digital 3D CAAD (Computer Aided Architectural Design) modeling of masterpieces of modem and contemporary architecture. The charm of reconstruction through digital modeling is far less than that of work done on traditional maquette, indeed, makes much deeper level of detail and specificity from knowing. We had to know many technical characteristics of the buildings beyond size, like static-structural features, physical features, economic features and others. In this way' the model become real-simulation, a simulated architectural model in all aspects. In addition to these aspects we deeply analyze also the formal, morphological, historical and architectural aspects. The idea is to revitalize and re-discover the logics and the rules of the projected constructions that the designer architect have invented for each masterpiece of architecture, through the comprehension of how is done. The proportional analysis of the modularity on which the design is based is mandatory subject of investigation.展开更多
A supramolecular complex of Cd(II) with 1D water tapes as pillars[Cd2(dpa)2(phen)2(H2O)2]·6H2O 1 (H2dpa = diphenic acid, phen = phenanthroline), has been synthesized and characterized by elemental analy...A supramolecular complex of Cd(II) with 1D water tapes as pillars[Cd2(dpa)2(phen)2(H2O)2]·6H2O 1 (H2dpa = diphenic acid, phen = phenanthroline), has been synthesized and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction analysis. The crystal is of triclinic, space group P1^- with a = 9.7029(4), b = 11.9601(5), c = 12.1788(4) A, α = 71.6990(10), β = 71.8740(10), γ = 74.4680(10)°, V = 1252.39(8) A^3, C52H48Cd2N4O16, Mr = 1209.76, Z= 1, Dc = 1.604 g/cm^3,μ = 0.925 mm^-1, F(000) = 612, R = 0.0679 and wR = 0.2514 for 3870 observed reflections (I 〉 2σ(I)). Two intramolecular Cd(II) centers of this complex are encircled by two dpa^2- ligands forming an 18-membered ring, which is further assembled into a pillared three-dimensional (3D) supramolecular architecture through the synergetic effect of intermolecular face-to-face π…π stacking and weak O-H…O hydrogen-bonding interactions. Moreover, this complex exhibits photoluminescence with the main emission bands located at about 456 nm upon excitation at 355 nm in the solid state at room temperature.展开更多
As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training ...As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training and so on. Its trend is gradually changed from client to web, and so many people start to research the 3D graphics engine technology on the web. WebGL and HTML5 rise in recent years and WebGL solves two problems of interactive 3D application on the web perfectly. Firstly, it implements the interactive 3D web application by JavaScript without any browser plug-in components. Secondly, it makes graphics rendering using the underlying graphics hardware, which is united, standard and cross-platform OpenGL interface. However, it is very difficult for 3D application web programmer to understand multifarious details. Therefore, a 3D engine based on WebGL comes into being. The paper consults the existing 3D engine design idea, architecture and implementation experience, and designs a 3D graphics engine based on WebGL and Typescript.展开更多
July 23,2007,Shenzhen,China -ZTE Corporation,a leading global provider of telecommunications equipment and network solutions,announced today that after extensive tests,its IMS product portfolios support the MultiServi...July 23,2007,Shenzhen,China -ZTE Corporation,a leading global provider of telecommunications equipment and network solutions,announced today that after extensive tests,its IMS product portfolios support the MultiService Forum (MSF) R3 "NGN Guidelines" and comply with the MSF Release 3 Architecture. ZTE,one of the most active members of MSF,began its Global Multiservice Interoperability (GMI) testing at Verizon’s lab in Waltham,Massachusetts in October 2006.展开更多
Focusing on the problems occurred in traditional 2D image-word-based web applications, the author put forward con-cept of integrating Web3D, Flex and SSH technologies to create advanced “3D Virtual Reality & RIA...Focusing on the problems occurred in traditional 2D image-word-based web applications, the author put forward con-cept of integrating Web3D, Flex and SSH technologies to create advanced “3D Virtual Reality & RIA” web application architecture, researched mechanisms of their architectures, and implemented their integration and communication & interaction: Flex and Struts2 via XML, Flex and Spring & Hibernate via BlazeDS, Flex and Web3D via JavaScript. The practice has shown that the integrated web architecture based on Web3D, Flex and SSH is effective and valuable.展开更多
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
基金funded by the National Science Foundation of China (32372910 and 32102567)the Program for Shaanxi Science&Technology (2022KJXX-13, 2023-YBNY-144, K3031223077 and 2022GD-TSLD-46–0302)
文摘Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulating tran-scriptional reprogramming.The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver(FLS)and reveal their effect on hepatic transcriptional reprogramming in laying hens.Results Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposi-tion as well as higher total triglyceride and cholesterol in serum.A/B compartment switching,topologically associat-ing domain(TAD)and chromatin loop changes are identified by high-throughput/resolution chromosome conforma-tion capture(HiC)technology.Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage.H3K27ac differential peaks and differential expres-sion genes(DEGs)identified through RNA-seq analysis are also enriched in these pathways.Notably,certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters.DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogram-ming.Furthermore,disturbed folate metabolism is observed,as evidenced by lower folate levels and altered enzyme expression.Conclusion Our findings establish a link between transcriptional reprogramming changes and 3D chromatin struc-ture variations during early FLS formation,which provides candidate transcription factors and folate as targets for FLS prevention or treatment.
基金financially supported by the National Key Research and Development Program of China(2018YFA0703003)the National Natural Science Foundation of China (52125501)+2 种基金the Key Research Project of Shaanxi Province (2021LLRH-08,2021GXLH-Z-028)the Program for Innovation Team of Shaanxi Province (2023-CX-TD-17)the Fundamental Research Funds for the Central Universities。
文摘Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer from weak cell-scaffold interactions and insufficient cell organizations due to the limited resolution of the 3D-printed features.Here,composite scaffolds with mechanically-robust frameworks and aligned nanofibrous architectures are presented and hybrid manufactured by combining techniques of 3D printing,electrospinning,and unidirectional freeze-casting.It was found that the composite scaffolds provided volume-stable environments and enabled directed cellular infiltration for tissue regeneration.In particular,the nanofibrous architectures with aligned micropores served as artificial extracellular matrix materials and improved the attachment,proliferation,and infiltration of cells.The proposed scaffolds can also support the adipogenic maturation of adipose-derived stem cells(ADSCs)in vitro.Moreover,the composite scaffolds were found to guide directed tissue infiltration and promote nearby neovascularization when implanted into a subcutaneous model of rats,and the addition of ADSCs further enhanced their adipogenic potential.The presented hybrid manufacturing strategy might provide a promising way to produce additional topological cues within 3D-printed scaffolds for better tissue regeneration.
文摘With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.
基金supported by the National Natural Science Foundation of China(21805105,21975091 and 21773078)。
文摘Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution of S and its discharged products hinder their practical applications.MXenes have metallic conductivity,ultra-thin two-dimensional(2D)structures,rich surface functional groups,and macrostructural adjustability and have been widely used to design advanced sulfur hosts.3D network structures assembled by 2D MXene nanosheets have shown superior performance for improving reaction kinetics,accommodating and dispersing sulfur at the micro-/nanoscale,and capturing polysulfides due to their porous interconnected structure.Herein,the applications of MXene architectures related to 2D layered structures,3D multilayered structures,and 3D spherical structures as sulfur hosts are reviewed.The structure-performance relationship,challenges for current designs,and opportunities for future 3D architectures for LSBs are also analyzed.
基金Project ofNational "863" Plan of China (No.2004AA119030)
文摘Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to develop service models and architectures for B3G system. A three-dimension service model is proposed. The dimensions are identified as service support scope, service capability definition, and adaptive feature elements. Then, the hierarchical service architecture for B3G is introduced. The enabling technologies for B3G service architecture are discussed in this paper, such as Virtual Home Environment (VHE), service support environment, service openness, distributed computing, intelligent technology, and profile.
文摘The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.
基金financially supported by Natural Science Foundation of China (U1701245)Research Program of Sanya Yazhou Bay Science and Technology City (No. SKJC-2020-01-009)+2 种基金Natural Science Foundation of China (91958206, 41876044)National Key Research and Development Program of China (2018YFC0308301)Strategic Priority Research Program of Chinese Academy of Sciences (XDA22040105)。
文摘Yongle atoll in the Xisha(Paracel) Archipelago is an isolated carbonate platform developed on Precambrian metamorphic and Mesozoic volcanic rocks since the early Miocene. To identify the 3D stratigraphic architecture and evolution of this platform, 13 high-resolution seismic profiles and shallow-to-deep water multi-beam data were processed and analyzed to reveal seismic facies, sequence boundary reflectors, seismic units, and platform architecture. Nine types of seismic facies were recognized based on their geometry, which included seismic amplitude, continuity, and termination patterns;additionally, six reflections, i.e., Tg, T60, T50, T40, T30, and T20, were identified in the Cenozoic strata. Five seismic units, SQ1(lower Miocene), SQ2(middle Miocene), SQ3(upper Miocene), SQ4(Pliocene), and SQ5(Quaternary), were identified from bottom to top across the platform. The platform grew rapidly in the middle Miocene and backstepped in the late Miocene–Pliocene. Here, we discuss the developmental characteristics and evolution of the Yongle Atoll, in combination with drilling wells, which can be divided into four stages: the initiation stage in the early Miocene, the flourishing stage in the middle Miocene, the partial-drowning stage in the late Miocene–Pliocene, and modern atoll in the Quaternary.
基金Funded by the National Natural Science Foundation of China (Nos. 22075219 and 51972257)the Fundamental Research Funds for the Central Universities (WUT:2021IA002)the National Key Research Program of China (No. 2016YFA0202602)。
文摘We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (CC) with specific (104) facet exposure. The highly exposed (104) facets provide abundant unsaturated Fe atoms with dangling bonds as nitrogen reduction reaction catalytically active sites. In addition, the NAs architecture enables the enhanced electrochemical surface area (ECSA) to fully manifest the active sites and maintain the mass diffusion. Thus, the selectively exposed (104) facets coupled with the high ECSA of NAs architecture achieve a high FE of 14.89% and a high yield rate of 17.28 μg h^(-1) cm^(-2). This work presents an effective strategy to develop highly efficient catalytic electrodes for electrochemical NRR via facet regulation and nanoarray architecture.
文摘The research deal with the reconstruction through digital 3D CAAD (Computer Aided Architectural Design) modeling of masterpieces of modem and contemporary architecture. The charm of reconstruction through digital modeling is far less than that of work done on traditional maquette, indeed, makes much deeper level of detail and specificity from knowing. We had to know many technical characteristics of the buildings beyond size, like static-structural features, physical features, economic features and others. In this way' the model become real-simulation, a simulated architectural model in all aspects. In addition to these aspects we deeply analyze also the formal, morphological, historical and architectural aspects. The idea is to revitalize and re-discover the logics and the rules of the projected constructions that the designer architect have invented for each masterpiece of architecture, through the comprehension of how is done. The proportional analysis of the modularity on which the design is based is mandatory subject of investigation.
基金the State Key Basic Research and Development Plan of China (001CB108906)the Knowledge Innovation Program of the Chinese Academy of Sciences, the NSF (2006J0015)the Major Special Foundation of Fujian Province (2005HZ1027, 2005HZ01-1)
文摘A supramolecular complex of Cd(II) with 1D water tapes as pillars[Cd2(dpa)2(phen)2(H2O)2]·6H2O 1 (H2dpa = diphenic acid, phen = phenanthroline), has been synthesized and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction analysis. The crystal is of triclinic, space group P1^- with a = 9.7029(4), b = 11.9601(5), c = 12.1788(4) A, α = 71.6990(10), β = 71.8740(10), γ = 74.4680(10)°, V = 1252.39(8) A^3, C52H48Cd2N4O16, Mr = 1209.76, Z= 1, Dc = 1.604 g/cm^3,μ = 0.925 mm^-1, F(000) = 612, R = 0.0679 and wR = 0.2514 for 3870 observed reflections (I 〉 2σ(I)). Two intramolecular Cd(II) centers of this complex are encircled by two dpa^2- ligands forming an 18-membered ring, which is further assembled into a pillared three-dimensional (3D) supramolecular architecture through the synergetic effect of intermolecular face-to-face π…π stacking and weak O-H…O hydrogen-bonding interactions. Moreover, this complex exhibits photoluminescence with the main emission bands located at about 456 nm upon excitation at 355 nm in the solid state at room temperature.
文摘As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training and so on. Its trend is gradually changed from client to web, and so many people start to research the 3D graphics engine technology on the web. WebGL and HTML5 rise in recent years and WebGL solves two problems of interactive 3D application on the web perfectly. Firstly, it implements the interactive 3D web application by JavaScript without any browser plug-in components. Secondly, it makes graphics rendering using the underlying graphics hardware, which is united, standard and cross-platform OpenGL interface. However, it is very difficult for 3D application web programmer to understand multifarious details. Therefore, a 3D engine based on WebGL comes into being. The paper consults the existing 3D engine design idea, architecture and implementation experience, and designs a 3D graphics engine based on WebGL and Typescript.
文摘July 23,2007,Shenzhen,China -ZTE Corporation,a leading global provider of telecommunications equipment and network solutions,announced today that after extensive tests,its IMS product portfolios support the MultiService Forum (MSF) R3 "NGN Guidelines" and comply with the MSF Release 3 Architecture. ZTE,one of the most active members of MSF,began its Global Multiservice Interoperability (GMI) testing at Verizon’s lab in Waltham,Massachusetts in October 2006.
文摘Focusing on the problems occurred in traditional 2D image-word-based web applications, the author put forward con-cept of integrating Web3D, Flex and SSH technologies to create advanced “3D Virtual Reality & RIA” web application architecture, researched mechanisms of their architectures, and implemented their integration and communication & interaction: Flex and Struts2 via XML, Flex and Spring & Hibernate via BlazeDS, Flex and Web3D via JavaScript. The practice has shown that the integrated web architecture based on Web3D, Flex and SSH is effective and valuable.