The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM...The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.展开更多
The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23...The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23%-0.85%)and Cu (0.15%-0.45%) were cast and forged, and then austenitized at 870℃ for 1h, followed by oil quenching. All specimens were tempered at 650℃ for 1h. The results show that as the amounts of Mn and Cu increase respectively from 0.35% to 0.85% and from 0.15% to 0.45%, the yield and tensile strength increase. The highest impact energies were observed in the specimen with 0.35% Mn and in the specimen with 0.25% Cu. The impact energy decreases with increasing the Mn and Cu from 0.35% to 0.85% and from 0.25% to 0.45%, respectively. Furthermore, the variation of Mn and Cu does not cause a considerable change in the tempered martensite microstructure. The optimum strength and toughness is observed in 0.35% Mn containing steel and in the 0.25% Cu containing steel.展开更多
The pressing bonding of steel plate to QTi3.5-3.5 graphite slurry was conducted. Under the conditions of 530 ℃ for the preheat temperature of dies, 45% for the solid fraction of QTi3.5- 3.5 graphite slurry, 50 MPa fo...The pressing bonding of steel plate to QTi3.5-3.5 graphite slurry was conducted. Under the conditions of 530 ℃ for the preheat temperature of dies, 45% for the solid fraction of QTi3.5- 3.5 graphite slurry, 50 MPa for the pressure and 2 min for the pressing time, the relationship between the preheat temperature of steel plate and interfacial mechanical property of bonding plate was studied. The results show that when the preheat temperature of steel plate is lower titan 618 ℃ , the interfacial shear strength of bonding plate increases with the increasing of the preheat temperature of steel plate. When the preheat temperature of steel plate is higher than 618 ℃ , the interfacial shear strength decreases with the increasing of the preheat temperature of steel plate. When the preheat temperature of steel plate is 618 ℃ , the highest interfacial shear strength of bonding plate of 127.8 MPa can be got.展开更多
基金Item Sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholars ,State Education Ministry(2004176)
文摘The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.
文摘The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23%-0.85%)and Cu (0.15%-0.45%) were cast and forged, and then austenitized at 870℃ for 1h, followed by oil quenching. All specimens were tempered at 650℃ for 1h. The results show that as the amounts of Mn and Cu increase respectively from 0.35% to 0.85% and from 0.15% to 0.45%, the yield and tensile strength increase. The highest impact energies were observed in the specimen with 0.35% Mn and in the specimen with 0.25% Cu. The impact energy decreases with increasing the Mn and Cu from 0.35% to 0.85% and from 0.25% to 0.45%, respectively. Furthermore, the variation of Mn and Cu does not cause a considerable change in the tempered martensite microstructure. The optimum strength and toughness is observed in 0.35% Mn containing steel and in the 0.25% Cu containing steel.
基金Funded by the National Natural Science Foundation of China(No.50274047 and 50304001) Beijing Jiaotong University ScienceFoundation,andthe Ministry of Education Foundation
文摘The pressing bonding of steel plate to QTi3.5-3.5 graphite slurry was conducted. Under the conditions of 530 ℃ for the preheat temperature of dies, 45% for the solid fraction of QTi3.5- 3.5 graphite slurry, 50 MPa for the pressure and 2 min for the pressing time, the relationship between the preheat temperature of steel plate and interfacial mechanical property of bonding plate was studied. The results show that when the preheat temperature of steel plate is lower titan 618 ℃ , the interfacial shear strength of bonding plate increases with the increasing of the preheat temperature of steel plate. When the preheat temperature of steel plate is higher than 618 ℃ , the interfacial shear strength decreases with the increasing of the preheat temperature of steel plate. When the preheat temperature of steel plate is 618 ℃ , the highest interfacial shear strength of bonding plate of 127.8 MPa can be got.