The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal ...The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.展开更多
Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its mic...Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.展开更多
文摘The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.
文摘Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.
文摘采用Gleeble-1500D热模拟试验机研究30%SiCp/Al复合材料在温度为623~773 K、应变速率为0.01~10 s-1下的热变形及动态再结晶行为。结果表明:材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度降低或应变速率升高而增大,材料热激活能为272.831 k J/mol。以试验数据为基础,建立q-s和?q/?s-s曲线,从而进一步获得动态再结晶的临界应变和稳态应变,通过试验数据的回归分析,建立动态再结晶的临界应变模型和稳态应变模型,并在此基础上,获得所需要材料的动态再结晶图。