To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a...Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.展开更多
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slo...Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.展开更多
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test...Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging ampli...Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.展开更多
The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the...The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.展开更多
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary condition...The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.展开更多
Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and re...Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and reliably,it is necessary to assess condition of power transformer accurately.Return voltage method based on voltage response measurements is still a new non-intrusive diagnosis method for internal insulation aging of transformer.In this paper the technique and application of return voltage measurement and some results of voltage response measurements of several transformers was introduced.Voltage response measurements were performed on various transformers with different voltage grades,various operating periods,different moisture contents and aging degrees on site.Derived moisture contents from return voltage measurement were compared with the corresponding moisture contents obtained from the analysis of oil samples.Based on on-site experiments and theoretical analysis,the criteria for insulation state of transformer are proposed.Moisture condition of transformer insulation can be determined by using return dominant time constant,and a good correlation between aging degree and the return voltage initial slopes of the aged transformers.Field test performed on several transformers,its interpretation of results are also presented,which proves that return voltage measurements can be used as a reliable tool for evaluating moisture content in transformer insulation.展开更多
There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection...There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection in Wudongde reservoir area of Jinshajiang River valley for example. In all engineering geological conditions,the chronologic age and attitude of strata,and the lithologic association factors control the distributions and evolvement characteristics of slope geological hazard in the studied area. The study shows that the slopes in geological evolution are in different stages. The conclusion helps to understand the types and the intensity of geological disasters.展开更多
This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in th...This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions.展开更多
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.
基金supported by the National Key Research and Development Plan of China under Grant No.2021YFB2600703.
文摘Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.
基金National Natural Science Foundation of China under Grant Nos.41430634,51578195,51378161,and 51308547the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology under Grant No.SKLGP2013K011
文摘Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department, China (Grant No.16ZB0105)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z007)
文摘Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金financially supported by Important National Science and Technology Specific Projects of China(Grant No. 2011ZX05023-005-005)
文摘Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.
基金support by the National Natural Science Foundation of China (No. 41372324)support from the Chinese Special Funds for Major State Basic Research Project under Grant No. 2010CB732001
文摘The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.
基金This research is supported by the National Science Council of Taiwan under the grant of NSC 86-2611-E-006-019.
文摘The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.
基金Project Supported by Science and Technology Fund of Fujian E-lectric Power Limited Company(NC2006044)Scientific Research Fund of Fujian Education Depart ment(JB06045)
文摘Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and reliably,it is necessary to assess condition of power transformer accurately.Return voltage method based on voltage response measurements is still a new non-intrusive diagnosis method for internal insulation aging of transformer.In this paper the technique and application of return voltage measurement and some results of voltage response measurements of several transformers was introduced.Voltage response measurements were performed on various transformers with different voltage grades,various operating periods,different moisture contents and aging degrees on site.Derived moisture contents from return voltage measurement were compared with the corresponding moisture contents obtained from the analysis of oil samples.Based on on-site experiments and theoretical analysis,the criteria for insulation state of transformer are proposed.Moisture condition of transformer insulation can be determined by using return dominant time constant,and a good correlation between aging degree and the return voltage initial slopes of the aged transformers.Field test performed on several transformers,its interpretation of results are also presented,which proves that return voltage measurements can be used as a reliable tool for evaluating moisture content in transformer insulation.
文摘There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection in Wudongde reservoir area of Jinshajiang River valley for example. In all engineering geological conditions,the chronologic age and attitude of strata,and the lithologic association factors control the distributions and evolvement characteristics of slope geological hazard in the studied area. The study shows that the slopes in geological evolution are in different stages. The conclusion helps to understand the types and the intensity of geological disasters.
文摘This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions.