Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
The dissimilar joining of CP-copper to 304 stainless steel was performed by gas tungsten arc welding process using different filler materials. The results indicated the formation of defect free joint by using copper f...The dissimilar joining of CP-copper to 304 stainless steel was performed by gas tungsten arc welding process using different filler materials. The results indicated the formation of defect free joint by using copper filler material. But, the presence of some defects like solidification crack and lack of fusion caused decreasing tensile strength of other joints. In the optimum conditions, the tensile strength of the joint was 96% of the weaker material. Also, this joint was bent till to 180° without any macroscopic defects like separation, tearing or fracture. It was concluded that copper is a new and good candidate for gas tungsten arc welding of copper to 304 stainless steel.展开更多
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.
文摘The dissimilar joining of CP-copper to 304 stainless steel was performed by gas tungsten arc welding process using different filler materials. The results indicated the formation of defect free joint by using copper filler material. But, the presence of some defects like solidification crack and lack of fusion caused decreasing tensile strength of other joints. In the optimum conditions, the tensile strength of the joint was 96% of the weaker material. Also, this joint was bent till to 180° without any macroscopic defects like separation, tearing or fracture. It was concluded that copper is a new and good candidate for gas tungsten arc welding of copper to 304 stainless steel.