The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfe...The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.展开更多
By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were ...By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.展开更多
Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co an...Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.展开更多
Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated....Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.展开更多
Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by...Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.展开更多
The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts ...The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.展开更多
A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the...A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.展开更多
The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochem...The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.展开更多
An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched ...An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.展开更多
316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce o...316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.展开更多
High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material withi...High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material within a short pulse time,coupled thermal and stress processes would lead to the formation of metastalbe microstructure with improved properties.In the present work,HCPEB treatment of 316L stainless steel(SS) was carried out and the microstructural changes in modified surface layer were characterized with optical microscopy,X-ray diffractometry and electron backscatter diffractometry(EBSD) techniques.The corrosion resistance of modified surface was measured in a 5wt.% salt solution.The evolution regularity of surface craters and grain refinement effect,as well as the preferred orientation of(111) crystal plane occurring in the HCPEB treatment under different working parameters were discussed along with their influence on corrosion resistance.展开更多
Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria IOB and anaerobic sulfate-reducing bacteria SRB isolated from cooling water systems in...Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria IOB and anaerobic sulfate-reducing bacteria SRB isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy SEM and energy dispersive atom X-ray analysisEDAX. The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel sur- face in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products in- creased the corrosion damage degree of the passive film and accelerated pitting propagation.展开更多
To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant mat...To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant materials of clinical application as the contrast.Both materials were implanted in animal and the histopathological evaluations were carried out.The statistical analyses show that there are no significant differences between two groups(P>0.05),which demonstrates that MIM 316L stainless steel has a good biocompatibility.展开更多
Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning elec...Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.展开更多
In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film o...In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CRi to TiCLi (mCH/TiCl4) is changed from 1.2 to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,t...This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.展开更多
Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medica...Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.展开更多
HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter,pla...HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter,plasma emission spectrometer,scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time,Ca and P ion concentrations increase gradually,and then approach equilibrium. The bone-like apatite layer forms on the composites surface,which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration,and can provide firm fixation between HA60/316L SS composite implants and human body bone.展开更多
316L stainless steel samples, as a widespread used material, were irradiated with HIPIB at the beam parameters of ion energy 300 keV, current density 100, 200 and 300 A/cm2, shot number 10 and pulse duration 75 ns. Th...316L stainless steel samples, as a widespread used material, were irradiated with HIPIB at the beam parameters of ion energy 300 keV, current density 100, 200 and 300 A/cm2, shot number 10 and pulse duration 75 ns. The surface morphology and the phase structure in the near surface region of original and treated samples were analyzed with scanning electron microscopy (SEM) and X-ray diffractometry (XRD). It is shown that the HIPIB irradiation can smooth the surface of the samples, and the preferred orientation is present in the surface layer of irradiated coupons. The influence of HIPIB irradiation on the oxidation behavior of 316L stainless steel at 700℃for up to 100 h was investigated. Electron probe microanalysis (EPMA) was used to study the distribution of elements in the oxidation products. It is found that the oxidation behavior of the irradiated coupons depends greatly on the ion current density of HIPIB. HIPIB irradiation with ion current density of 100 A/cm2 slightly reduces the oxidation rate with respect to the unirradiated coupon. The improvement of the oxidation resistance can be attributed to more oxide of Cr that forms on the surface of the irradiated coupons. In contrast, HIPIB irradiation with ion current density of 200 or 300 A/cm2 is proved to be detrimental, causing a higher oxidation rate.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.51975339,51605262)China Postdoctoral Science Foundation(Grant Nos.2019T120602,2017M610439)Youth Innovation and Technology Support Program for University in Shandong Province(Grant No.2019KJB003).
文摘The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.
文摘By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.
基金Project(2012BAE04B01) supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.
文摘Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.
基金Project(2018YFB1502500)supported by the National Key Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China+1 种基金Projects(2020JJ5100,2018JJ3101)supported by Natural Science Foundation of Hunan Province,ChinaProject(51671085)supported by the National Natural Science Foundation of China。
文摘Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.
基金the National Key R&D Program of China(Grant No.2018YFB1106100)。
文摘The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.
文摘A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.
文摘The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.
文摘An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.
基金financially supported by NSFC-Guangdong Natural Science Mutual Funds(Item No.U1034002)
文摘316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.
基金This work is financially supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars and Franco-China Cooperative Research Program between University of Metz and Dalian Uni-versity of Technology(2004)
文摘High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material within a short pulse time,coupled thermal and stress processes would lead to the formation of metastalbe microstructure with improved properties.In the present work,HCPEB treatment of 316L stainless steel(SS) was carried out and the microstructural changes in modified surface layer were characterized with optical microscopy,X-ray diffractometry and electron backscatter diffractometry(EBSD) techniques.The corrosion resistance of modified surface was measured in a 5wt.% salt solution.The evolution regularity of surface craters and grain refinement effect,as well as the preferred orientation of(111) crystal plane occurring in the HCPEB treatment under different working parameters were discussed along with their influence on corrosion resistance.
基金the National Natural Science Foundation of China (No.20576108).
文摘Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria IOB and anaerobic sulfate-reducing bacteria SRB isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy SEM and energy dispersive atom X-ray analysisEDAX. The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel sur- face in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products in- creased the corrosion damage degree of the passive film and accelerated pitting propagation.
基金Project(2003AA302210)supported by the National Hi-tech Research Prograrm of Chinap.
文摘To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant materials of clinical application as the contrast.Both materials were implanted in animal and the histopathological evaluations were carried out.The statistical analyses show that there are no significant differences between two groups(P>0.05),which demonstrates that MIM 316L stainless steel has a good biocompatibility.
基金Project(51134003) supported by the National Natural Science Foundation of China
文摘Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.
文摘In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CRi to TiCLi (mCH/TiCl4) is changed from 1.2 to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金supported by the Key R&D Programs of Sichuan Province of China (No. 2018GZ0145)the Science and Technology Planning Projects of Zigong of Sichuan Province (No. 2018CDZG-1)the Major Scientific and Technological Key Bidding Projects in Panzhihua Experimental Zone (No. 1640STC30166/01)
文摘This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.
文摘Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.
基金Project(50774096) and project (50604017) supported by the National Natural Science Foundation of ChinaProject(1343-74334000011) supported by the Postgraduate Education and Innovation Project from Central South University, China
文摘HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter,plasma emission spectrometer,scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time,Ca and P ion concentrations increase gradually,and then approach equilibrium. The bone-like apatite layer forms on the composites surface,which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration,and can provide firm fixation between HA60/316L SS composite implants and human body bone.
基金Project (2003AA305610) supported by the Hi-tech Research and Development Program of China
文摘316L stainless steel samples, as a widespread used material, were irradiated with HIPIB at the beam parameters of ion energy 300 keV, current density 100, 200 and 300 A/cm2, shot number 10 and pulse duration 75 ns. The surface morphology and the phase structure in the near surface region of original and treated samples were analyzed with scanning electron microscopy (SEM) and X-ray diffractometry (XRD). It is shown that the HIPIB irradiation can smooth the surface of the samples, and the preferred orientation is present in the surface layer of irradiated coupons. The influence of HIPIB irradiation on the oxidation behavior of 316L stainless steel at 700℃for up to 100 h was investigated. Electron probe microanalysis (EPMA) was used to study the distribution of elements in the oxidation products. It is found that the oxidation behavior of the irradiated coupons depends greatly on the ion current density of HIPIB. HIPIB irradiation with ion current density of 100 A/cm2 slightly reduces the oxidation rate with respect to the unirradiated coupon. The improvement of the oxidation resistance can be attributed to more oxide of Cr that forms on the surface of the irradiated coupons. In contrast, HIPIB irradiation with ion current density of 200 or 300 A/cm2 is proved to be detrimental, causing a higher oxidation rate.