The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by m...The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by means of a Gleeble-3800 thermal simulation testing machine at a strain rate of 3×10^-3s^-1 and a deformation temperature of 600 - 1 100℃, true stress- strain curves are obtained. By analyzing the true stress-strain curves and microscopic structure of the samples, it can be conclu-ded that 1 000℃ and slightly higher temperature are suitable for low-rate strain processing of 316LN stainless steel.展开更多
The force flow cooled superconducting cable-in-conduit conductor (CICC) is used in both of EAST toroidal field (TF) and poloidal field (PF) coils. The conductor consists of multi-stage NbTi superconducting cable...The force flow cooled superconducting cable-in-conduit conductor (CICC) is used in both of EAST toroidal field (TF) and poloidal field (PF) coils. The conductor consists of multi-stage NbTi superconducting cable and 1.5 mm thick square jacket. The cable is pulled through in a thin wall circular jacket and then compacted to square cross-section conductor. The jacket material is SUS316LN austenitic stainless steel seamless tubes (about 10 m each), which is assembled by butt-welding up to 600 m. The results of the welding procedure investigation and quality assurance procedures carrying out are described in this paper.展开更多
Effect of cerium(Ce)on creep strength and microstructure of 316LN austenitic stainless steel(316LN steel)at 700℃/150 MPa was investigated by scanning electron microscopy(SEM),scanning transmission electron microscopy...Effect of cerium(Ce)on creep strength and microstructure of 316LN austenitic stainless steel(316LN steel)at 700℃/150 MPa was investigated by scanning electron microscopy(SEM),scanning transmission electron microscopy(STEM)and thermodynamic calculations.Addition of 0.032 wt%Ce to 316LN steel results in a prominent increase in creep life from 313 to 556 h.Ce enriches in titanium nitride nanoparticles,increases slightly the activity and diffusion coefficient of Mo,and facilitates the formation of fine and dense intragranular Laves phase precipitates.Thus the creep strength is remarkably enhanced by Ce addition in 316LN steel through the intragranular Laves phase precipitation strengthening.It reveals a new insight into the improvement effect of rare earth(RE)elements such as Ce on creep strength of austenitic stainless steels,which inspired the design of RE-microalloying heat-resistant steels.展开更多
Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN auste...Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.展开更多
The heterogeneous mixed-grain microstructure is a common defect for the heavy forging of 316LN austenitie stainless steel. Isothermal compression experiments were performed on a Gleeble-3500 thermo-mechanical simulato...The heterogeneous mixed-grain microstructure is a common defect for the heavy forging of 316LN austenitie stainless steel. Isothermal compression experiments were performed on a Gleeble-3500 thermo-mechanical simulator to investigate the effect of process parameters on the fragment and re- finement of millimeter-grade coarse grains (MCGs) during hot cogging. The experimental results in- dicate that the stress of MCG specimens is much larger than that of fine grain (FG) ones at 1150 ℃, while the stress difference between MCG and FG samples became smaller at 1200 ℃. Moreover, the MCGs can be well fragmented and refined under the condition of temperature of 1200 ℃, strain rate of 0.01 s-1 , and reduction rate of 50%. Meanwhile, numerical simulations were conducted to study the influences of temperature, strain and strain rate on microstructure evolution. The results of ex- periments and simulations comprehensively demonstrate that the MCG results in the increase of de- formation resistance and incompatibility of deformation, and it can be fragmented and refined at 1200 ℃ so that the plastic deformation energy decreases remarkably with the increase of temperature from 1 150 to 1200 ℃.展开更多
A ductile fracture criterion of 316LN stainless steel, combined with the plastic deformation capacity of ma- terial and the stress state dependent damages, was proposed to predict ductile fracture during hot deformati...A ductile fracture criterion of 316LN stainless steel, combined with the plastic deformation capacity of ma- terial and the stress state dependent damages, was proposed to predict ductile fracture during hot deformation. To the end, tensile tests at high temperatures were first performed to investigate the fracture behavior of 316LN stain- less steel. The experimental results show the variation of the critical fracture strain as a function of temperature and strain rate. Second, the criterion was calibrated by using the upsetting tests and the corresponding numerical simula- tions. Finally, the proposed fracture criterion was validated by the designed tests and the corresponding finite ele- ment (FE) simulation. The results show that the criterion can successfully predict the onset of ductile fracture at ele- vated temperatures.展开更多
文摘The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by means of a Gleeble-3800 thermal simulation testing machine at a strain rate of 3×10^-3s^-1 and a deformation temperature of 600 - 1 100℃, true stress- strain curves are obtained. By analyzing the true stress-strain curves and microscopic structure of the samples, it can be conclu-ded that 1 000℃ and slightly higher temperature are suitable for low-rate strain processing of 316LN stainless steel.
基金The project supported by the National Meg-Science Engineering Project of the Chinese Government
文摘The force flow cooled superconducting cable-in-conduit conductor (CICC) is used in both of EAST toroidal field (TF) and poloidal field (PF) coils. The conductor consists of multi-stage NbTi superconducting cable and 1.5 mm thick square jacket. The cable is pulled through in a thin wall circular jacket and then compacted to square cross-section conductor. The jacket material is SUS316LN austenitic stainless steel seamless tubes (about 10 m each), which is assembled by butt-welding up to 600 m. The results of the welding procedure investigation and quality assurance procedures carrying out are described in this paper.
基金financially supported by the National Natural Science Foundation of China(No.51871212)the National Key Research and Development Program of China(2020YFB2006800)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC04010400)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2021060)the Key Project for the Application of Advances in Science and Technology of the Chinese Academy of Sciences(KFJ-HGZX-032)the Project for the Application of Advances in Science and Technology of the Chinese Academy of Sciences in Henan Province(2022203)the K.C.Wong Education Foundation。
文摘Effect of cerium(Ce)on creep strength and microstructure of 316LN austenitic stainless steel(316LN steel)at 700℃/150 MPa was investigated by scanning electron microscopy(SEM),scanning transmission electron microscopy(STEM)and thermodynamic calculations.Addition of 0.032 wt%Ce to 316LN steel results in a prominent increase in creep life from 313 to 556 h.Ce enriches in titanium nitride nanoparticles,increases slightly the activity and diffusion coefficient of Mo,and facilitates the formation of fine and dense intragranular Laves phase precipitates.Thus the creep strength is remarkably enhanced by Ce addition in 316LN steel through the intragranular Laves phase precipitation strengthening.It reveals a new insight into the improvement effect of rare earth(RE)elements such as Ce on creep strength of austenitic stainless steels,which inspired the design of RE-microalloying heat-resistant steels.
基金Item Sponsored by National Natural Science Foundation of China(51101136)Scientific and Technological Research Foundation for Outstanding Young Talents of Hebei Provincial Universities of China(Y2012034)College Innovation Team Leader Training Program of Hebei Province of China(LJRC012)
文摘Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.
基金financially sponsored by National Natural Science Foundation of China(Grant No.51675335)the support from Shanghai Rising-Star Program(Grant No.17YF1408900)the Young Scientist Research Award from Shanghai Jiao Tong University(Grant No.16X100040025)
文摘The heterogeneous mixed-grain microstructure is a common defect for the heavy forging of 316LN austenitie stainless steel. Isothermal compression experiments were performed on a Gleeble-3500 thermo-mechanical simulator to investigate the effect of process parameters on the fragment and re- finement of millimeter-grade coarse grains (MCGs) during hot cogging. The experimental results in- dicate that the stress of MCG specimens is much larger than that of fine grain (FG) ones at 1150 ℃, while the stress difference between MCG and FG samples became smaller at 1200 ℃. Moreover, the MCGs can be well fragmented and refined under the condition of temperature of 1200 ℃, strain rate of 0.01 s-1 , and reduction rate of 50%. Meanwhile, numerical simulations were conducted to study the influences of temperature, strain and strain rate on microstructure evolution. The results of ex- periments and simulations comprehensively demonstrate that the MCG results in the increase of de- formation resistance and incompatibility of deformation, and it can be fragmented and refined at 1200 ℃ so that the plastic deformation energy decreases remarkably with the increase of temperature from 1 150 to 1200 ℃.
基金Item Sponsored by National Science and Technology Major Project of China(2011ZX04014-051)National Basic Research Program of China(2011CB012903)085 Project of Shanghai Univercity of Engineering Science of China(nhky-2013-05)
文摘A ductile fracture criterion of 316LN stainless steel, combined with the plastic deformation capacity of ma- terial and the stress state dependent damages, was proposed to predict ductile fracture during hot deformation. To the end, tensile tests at high temperatures were first performed to investigate the fracture behavior of 316LN stain- less steel. The experimental results show the variation of the critical fracture strain as a function of temperature and strain rate. Second, the criterion was calibrated by using the upsetting tests and the corresponding numerical simula- tions. Finally, the proposed fracture criterion was validated by the designed tests and the corresponding finite ele- ment (FE) simulation. The results show that the criterion can successfully predict the onset of ductile fracture at ele- vated temperatures.