La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26...La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26 oxide has the apatite structure with space group P63/m. AC impedance measurements indicated that the oxides sintered in nitrogen have much higher conductivity than those sintered in air. The effects of grain boundaries on the conductivity were discussed.展开更多
文摘La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26 oxide has the apatite structure with space group P63/m. AC impedance measurements indicated that the oxides sintered in nitrogen have much higher conductivity than those sintered in air. The effects of grain boundaries on the conductivity were discussed.