The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T...The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.展开更多
The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Tagu...The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.展开更多
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
文摘采用富镧混合稀土对Al Si Mg系A35 7合金进行了变质处理 ,研究了稀土变质对合金铸态、热处理态的组织、力学性能及含氢量的影响 ,并与锶变质处理进行了比较。富镧混合稀土比锶有更强的变质A35 7合金中共晶硅的能力 ,更好的除氢效果和综合力学性能。稀土变质可获得高强韧性的Al Si Mg合金。
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
基金Projects(50774026,50875059)supported by the National Natural Science Foundation of ChinaProject(20070420023)supported by the China Postdoctoral Science FoundationProject(2008AA03A239)supported by the High-tech Research and Development Program of China
文摘The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.
文摘The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.