The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t...The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.展开更多
A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accura...A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.展开更多
基金the National Natural Science Foundation of China(Grant Nos.10471100,40437017,and 60573158)Beijing Jiaotong University Science and Technology Foundation
文摘The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.
基金supported by National Natural Science Foundation of China (Grant Nos. 10871022, 10771065,and 60573158)Natural Science Foundation of Hebei Province (Grant No. A2007001027)
文摘A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.