为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分...为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分模式的选择过程,减少编码时间。实验结果表明,在全帧内模式下,所提算法比原始算法平均可以节省34.33%的时间复杂度,同时带来的BDBR平均增量仅为1.665%,BDPSNR的平均降低量仅为0.076 dB。展开更多
360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to...360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).展开更多
文摘为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分模式的选择过程,减少编码时间。实验结果表明,在全帧内模式下,所提算法比原始算法平均可以节省34.33%的时间复杂度,同时带来的BDBR平均增量仅为1.665%,BDPSNR的平均降低量仅为0.076 dB。
文摘360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).