This paper adopts satellite channel brightness temperature simulation to study M-estimator variational retrieval. This approach combines both the advantages of classical variational inversion and robust M-estimators. ...This paper adopts satellite channel brightness temperature simulation to study M-estimator variational retrieval. This approach combines both the advantages of classical variational inversion and robust M-estimators. Classical variational inversion depends on prior quality control to elim- inate outliers, and its errors follow a Gaussian distribution. We coupled the M-estimators to the framework of classical variational inversion to obtain a M-estimator variational inversion. The cost function contains the M-estimator to guarantee the robustness to outliers and improve the retrieval re- sults. The experimental evaluation adopts Feng Yun-3A (FY-3A) simulated data to add to the Gaussian and Non-Gaussian error. The variational in- version is used to obtain the inversion brightness temperature, and temperature and humidity data are used for validation. The preliminary results demonstrate the potential of M-estimator variational retrieval.展开更多
基金Supported by Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GYHY201406028)Meteorological Open Research Fund for Huaihe River Basin(HRM201407)Anhui Meteorological Bureau Science and Technology Development Fund(RC201506)
文摘This paper adopts satellite channel brightness temperature simulation to study M-estimator variational retrieval. This approach combines both the advantages of classical variational inversion and robust M-estimators. Classical variational inversion depends on prior quality control to elim- inate outliers, and its errors follow a Gaussian distribution. We coupled the M-estimators to the framework of classical variational inversion to obtain a M-estimator variational inversion. The cost function contains the M-estimator to guarantee the robustness to outliers and improve the retrieval re- sults. The experimental evaluation adopts Feng Yun-3A (FY-3A) simulated data to add to the Gaussian and Non-Gaussian error. The variational in- version is used to obtain the inversion brightness temperature, and temperature and humidity data are used for validation. The preliminary results demonstrate the potential of M-estimator variational retrieval.