To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly...This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.展开更多
Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by i...Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surf...The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .展开更多
3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a th...3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.展开更多
Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are u...Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.展开更多
A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or des...A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.展开更多
According to the seismic and geological differences among every oil measures in mid-deep layers at west slope in Qikou Sag, varieties of new techniques on geophysics and geochemistry were introduced , such as seismic ...According to the seismic and geological differences among every oil measures in mid-deep layers at west slope in Qikou Sag, varieties of new techniques on geophysics and geochemistry were introduced , such as seismic pro-cess of target and CWS, neural network seismic microfacies cluster analysis, 3D interval velocity analysis. Taking advan-tage of the series of new techniques aims at predicting synthetically and quantitatively the deep gravity flow channel sandbody. Furthermore, considering the structural setting data, potential structural-lithologic traps were specified. As a re-sult, the geological and drilling effect is obviously promoted.展开更多
Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in g...Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in geophysical modeling is rapidly increasing;with this in mind we compare two of the most densely populated sets: EIGEN-6C4 and GGMplus. We characterize them in terms of their frequency histograms, Free Air anomalies, power spectrum, and simple Bouguer anomalies. The nature of the digital elevation models used for data reduction is discussed. We conclude that the GGMplus data set offers a better spatial resolution. To evaluate their effect in geophysical modelling, we chose an inland region with a prominent volcanic structure in which we perform 3D inversions of the respective Bouguer anomalies, obtaining density variations that in principle can be associated with the geologic materials and the structure of the volcanic edifice. Model results are analyzed along sections of the inverted data;we conclude that the GGMplus data set offers higher resolution in the cases analyzed.展开更多
The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoi...The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoirs trapped by favorable geological structures, identifiable through geophysical and seismic methods. The methodological approach is based on a combined analysis of studies and seismic data. Drilling data from well PA, including well logs and end-of-well reports, were used to characterize the lithological formations encountered, particularly those of the Albian. 3D seismic profiles were interpreted to identify structures conducive to hydrocarbon accumulation. Isochrone, isovelocity, and isobath maps were developed to refine the interpretation. Sedimentological analyses revealed five sandy/gritty levels between 2610 m and 3100 m, interspersed with clay, limestone, and siltstone beds. The seismic profiles highlighted two main prospects. These prospects exhibit favorable geological structures, including normal faults and structural traps that provide oil traps.展开更多
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金This research is sponsored by by China Natural Science Foundation (40274041), China National Petroleum Corporation (CNPC)Innovation Fund (2002CXKF-3)
文摘This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.
文摘Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .
文摘3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.
基金supported by the National Natural Science Foundation of China(No.42072169)。
文摘Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.
文摘A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.
文摘According to the seismic and geological differences among every oil measures in mid-deep layers at west slope in Qikou Sag, varieties of new techniques on geophysics and geochemistry were introduced , such as seismic pro-cess of target and CWS, neural network seismic microfacies cluster analysis, 3D interval velocity analysis. Taking advan-tage of the series of new techniques aims at predicting synthetically and quantitatively the deep gravity flow channel sandbody. Furthermore, considering the structural setting data, potential structural-lithologic traps were specified. As a re-sult, the geological and drilling effect is obviously promoted.
文摘Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in geophysical modeling is rapidly increasing;with this in mind we compare two of the most densely populated sets: EIGEN-6C4 and GGMplus. We characterize them in terms of their frequency histograms, Free Air anomalies, power spectrum, and simple Bouguer anomalies. The nature of the digital elevation models used for data reduction is discussed. We conclude that the GGMplus data set offers a better spatial resolution. To evaluate their effect in geophysical modelling, we chose an inland region with a prominent volcanic structure in which we perform 3D inversions of the respective Bouguer anomalies, obtaining density variations that in principle can be associated with the geologic materials and the structure of the volcanic edifice. Model results are analyzed along sections of the inverted data;we conclude that the GGMplus data set offers higher resolution in the cases analyzed.
文摘The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoirs trapped by favorable geological structures, identifiable through geophysical and seismic methods. The methodological approach is based on a combined analysis of studies and seismic data. Drilling data from well PA, including well logs and end-of-well reports, were used to characterize the lithological formations encountered, particularly those of the Albian. 3D seismic profiles were interpreted to identify structures conducive to hydrocarbon accumulation. Isochrone, isovelocity, and isobath maps were developed to refine the interpretation. Sedimentological analyses revealed five sandy/gritty levels between 2610 m and 3100 m, interspersed with clay, limestone, and siltstone beds. The seismic profiles highlighted two main prospects. These prospects exhibit favorable geological structures, including normal faults and structural traps that provide oil traps.