3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 ...3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 November 1 to 2022 February 27 in the Johnson-Morgan system V and R bands.The average magnitudes in each band were■=15.52±0.18 mag and■=15.07±0.17 mag.The overall variability amplitudes wereΔV=■,Amp=70.27%andΔR=■,Amp=68.56%,respectively.Most of the intraday variabilities(IDVs)occurred in 2021 December and 2022 February.The minimal rise/decay timescale was about 6 minutes(5.82±2.74 minutes and 6.18±2.81 minutes on 2022 February 11,6.99±3.70 minutes and 6.17±2.91 minutes on 2022 February 12).Durations of these rapid variabilities were from 11.99 to 179.67 minutes.The discrete correlation function analyses between V and R bands showed significantly correlated variability.Color index analysis of ID Vs showed that the spectrums do not change with variabilities.展开更多
研究了Blazar天体3C 66A光学波段的准周期光变行为.收集了3C 66A光学V波段将近18 yr (2003-2021年)的测光数据,观测数据主要来源是:上海天文台(ShAO)、 AAVSO (The American Association of Variable Star Observers)数据库、Steward天...研究了Blazar天体3C 66A光学波段的准周期光变行为.收集了3C 66A光学V波段将近18 yr (2003-2021年)的测光数据,观测数据主要来源是:上海天文台(ShAO)、 AAVSO (The American Association of Variable Star Observers)数据库、Steward天文台.使用了Jurkevich和Lomb-Scargle两种方法分析了光变数据.Jurkevich方法得到了(850±90) d (~2.3 yr)和(1150±140) d (~3.2 yr)的光变周期,而Lomb-Scargle方法在充分考虑了“红噪声”效应之后同样得到了(869±70) d和(1111±90) d的光变周期,它们的置信水平分别为>99%和> 95%.通过与之前的研究结果比较,发现~2.3 yr的光变周期在3C 66A的历史光变数据中是一个稳定的周期,而~3.2 yr的周期则是不稳定的.展开更多
We report results of our optical photometric observations of ten gamma-ray loud blazers, namely: 0219+428 (3C66A), PKS 0420-014 (OA 129), S5 0716+714, 0754+100 (OI 090.4), 0827+243 (OJ248), 1652+398 (Mrk 501), 2200+42...We report results of our optical photometric observations of ten gamma-ray loud blazers, namely: 0219+428 (3C66A), PKS 0420-014 (OA 129), S5 0716+714, 0754+100 (OI 090.4), 0827+243 (OJ248), 1652+398 (Mrk 501), 2200+420 (BL Lacertae), 2230+114 (CTA 102), 2251+158 (3C 454.3) and 2344+514. The observations were carried out in September-October, 2000 using the 70 cm optical telescope at Abstumani Observatory, Georgia. We found intra-day variations in 0420-014, S5 0716+714, BL Lacertae and CTA 102. A variation of 0.3 magnitude over a time scale of about 3 hours was observed in the R passband in BL Lacertae on JD 2451827. We did not detect any variation in 3C 66A, Mrk 501, or 3C 454.3 during our observations. Nor did we detect any clear evidence of variation in 1ES 2344+514 during our two weeks' observing run of the TeV gamma-ray source.展开更多
The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model. It is found that the quasi-simultaneous spectral energy distribution of 3C 66A c...The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model. It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular, the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR). Clues to its redshift and gamma-ray emission location are obtained. The results indicate the following. (i) On the redshift: The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra. Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light, it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3, with the most likely value being ~ 0.2. (ii) On the gamma-ray emission location: To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR, the gamma-ray emission region is always required to be beyond the inner zone of the BLR. The BLR absorption effect on gamma-ray emission confirms this point.展开更多
基金supported by the fund for the Youth Project of Basic Research Program of Yunnan Province (202001BB050012)the Joint Foundation of Department of Science and Technology of Yunnan Province and Yunnan University (202201BF070001-020)funded by the“Yunnan University Development Plan for World-Class Astronomy Discipline”。
文摘3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 November 1 to 2022 February 27 in the Johnson-Morgan system V and R bands.The average magnitudes in each band were■=15.52±0.18 mag and■=15.07±0.17 mag.The overall variability amplitudes wereΔV=■,Amp=70.27%andΔR=■,Amp=68.56%,respectively.Most of the intraday variabilities(IDVs)occurred in 2021 December and 2022 February.The minimal rise/decay timescale was about 6 minutes(5.82±2.74 minutes and 6.18±2.81 minutes on 2022 February 11,6.99±3.70 minutes and 6.17±2.91 minutes on 2022 February 12).Durations of these rapid variabilities were from 11.99 to 179.67 minutes.The discrete correlation function analyses between V and R bands showed significantly correlated variability.Color index analysis of ID Vs showed that the spectrums do not change with variabilities.
文摘研究了Blazar天体3C 66A光学波段的准周期光变行为.收集了3C 66A光学V波段将近18 yr (2003-2021年)的测光数据,观测数据主要来源是:上海天文台(ShAO)、 AAVSO (The American Association of Variable Star Observers)数据库、Steward天文台.使用了Jurkevich和Lomb-Scargle两种方法分析了光变数据.Jurkevich方法得到了(850±90) d (~2.3 yr)和(1150±140) d (~3.2 yr)的光变周期,而Lomb-Scargle方法在充分考虑了“红噪声”效应之后同样得到了(869±70) d和(1111±90) d的光变周期,它们的置信水平分别为>99%和> 95%.通过与之前的研究结果比较,发现~2.3 yr的光变周期在3C 66A的历史光变数据中是一个稳定的周期,而~3.2 yr的周期则是不稳定的.
基金Supported by the National Natural Science Foundation of China
文摘We report results of our optical photometric observations of ten gamma-ray loud blazers, namely: 0219+428 (3C66A), PKS 0420-014 (OA 129), S5 0716+714, 0754+100 (OI 090.4), 0827+243 (OJ248), 1652+398 (Mrk 501), 2200+420 (BL Lacertae), 2230+114 (CTA 102), 2251+158 (3C 454.3) and 2344+514. The observations were carried out in September-October, 2000 using the 70 cm optical telescope at Abstumani Observatory, Georgia. We found intra-day variations in 0420-014, S5 0716+714, BL Lacertae and CTA 102. A variation of 0.3 magnitude over a time scale of about 3 hours was observed in the R passband in BL Lacertae on JD 2451827. We did not detect any variation in 3C 66A, Mrk 501, or 3C 454.3 during our observations. Nor did we detect any clear evidence of variation in 1ES 2344+514 during our two weeks' observing run of the TeV gamma-ray source.
基金supported by the National Science Foundation of China (Grant Nos. 11063003 and 10963004)the Yunnan Provincial Science Foundation (grant 2009CI040)
文摘The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model. It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular, the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR). Clues to its redshift and gamma-ray emission location are obtained. The results indicate the following. (i) On the redshift: The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra. Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light, it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3, with the most likely value being ~ 0.2. (ii) On the gamma-ray emission location: To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR, the gamma-ray emission region is always required to be beyond the inner zone of the BLR. The BLR absorption effect on gamma-ray emission confirms this point.