The fatigue behaviors of 48MnV steel, both uncoated and coated with different thicknesses of 3Cr13 deposits using twin arc spraying, were investigated. The fatigue properties of the 48MnV steel, determined under axial...The fatigue behaviors of 48MnV steel, both uncoated and coated with different thicknesses of 3Cr13 deposits using twin arc spraying, were investigated. The fatigue properties of the 48MnV steel, determined under axial loading conditions, can be substantially decreased by coating 3Cr13 films, deposited by twin arc spraying. And the fatigue behavior of the thinner coatings is better than that of the thicker ones, of which the fatigue limits decrease by 9%[CD*2]14%. The decrease in fatigue life attributes to the less mechanical properties of the coatings in comparison with those of the substrate, their relative bad bonding strength and trapped oxide or Al2O3 particles retain in the matrix after blasting responsible for the initiation of fatigue cracks.展开更多
The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DC...The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.展开更多
A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hard...A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.展开更多
The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress ...The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.展开更多
The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack t...The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.展开更多
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm...By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.展开更多
Determination was carried out of fatigue crack propagation rate of steel 65Cr5Mo3W2VSiTi (LM2)with various bainite contents and M/B duplex structure tempered at various tempera- tures.The threshold value of fatigue fo...Determination was carried out of fatigue crack propagation rate of steel 65Cr5Mo3W2VSiTi (LM2)with various bainite contents and M/B duplex structure tempered at various tempera- tures.The threshold value of fatigue for each processing was estimated by experimental data. The mechanism for fatigue crack propagation of M/B duplex structure in steel LM2 seems to be non-continuous.The calculated fatigue crack micro-propagation rates are found to agree with the experimental data.展开更多
With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The r...With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.展开更多
The addition of Ni element into steel to prolong the service life of coated steel was investigated in marine atmospheric environment by laboratory simulated accelerated experiment.The scanning electron microscope and ...The addition of Ni element into steel to prolong the service life of coated steel was investigated in marine atmospheric environment by laboratory simulated accelerated experiment.The scanning electron microscope and electron probe microanalysis combined with electrochemical impedance spectroscopy were used to characterize coated steel properties and examined the anti-corrosion performance.The results showed that 3 wt.%Ni-advanced steel(3Ni steel)substrate obviously delayed the failure time of coating compared to carbon steel,therefore prolonging the service life of coating on the steel.X-ray diffraction patterns for the corrosion products under the scratched coating on 3Ni steel exhibited that FeNi_(2)O_(4) and Fe_(2)O_(3) occurred in the corrosion product of 3Ni steel.It was also found that Ni element enriched in the product layer through analyzing the appearance and composition of corrosion products by electron probe micro-analysis.Chloride ions were blocked out of product by the enrichment of Ni element in rust layer.展开更多
Compared with the traditional atm ospheric carburization, low-pressure carburization has the benefits of producing no surface oxidation and leaving fine, uniformly dispersed carbides in the carburized layer. However, ...Compared with the traditional atm ospheric carburization, low-pressure carburization has the benefits of producing no surface oxidation and leaving fine, uniformly dispersed carbides in the carburized layer. However, the process param eters for low-pressure carburization of 16Cr3NiWMoVNbE steel have yet to be optimized. Thus, we use the saturation-value method to optimize these parameters for aviation-gear materials. Toward this end, the m icrostructure and properties of 16Cr3NiWMoVNbE steel after different carburization processes are studied by optical microscopy, scanning electron microscopy, transm ission electron microscopy, and electron probe microanalysis. Considering the saturated austenite carbon concentration, we propose a model of carbon flux and an alloy coefficient for low -pressure carburization to reduce the carbon concentration in austenite and avoid the surface carbide network. At the early stage of carburization (30 s), the gas-solid interface has a higher concentration gradient. The averaging method is not ideal in practical applications, but the carbon flux measured by using the segm ented average m ethod is 2.5 times that measured by the overall average method, which is ideal in practical applications. The corresponding carburization tim e is reduced by 60%. By using the integral average method, the actual carburization time increases, which leads to the rapid form ation of carbide on the surface and affects the entire carburization process. Nb and Wcombine with C to form carbides, which hinders carbon diffusion and consumes carbon, resulting in a sharp decrease in the rate of C diffusion in austenite (the diffusion rate is reduced by 52% for 16Cr3NiWMoVNbE steel). By changing the diffusion coefficient model and comparing the hardness gradient of different processes, the depth of the actual layer is found to be very similar to the design depth.展开更多
In this study,the pitting corrosion behavior of 13Cr4Ni martensitic stainless steel(BASE)and that modified with rare earth(REM)in 0.1 mol/L Na Cl solution were characterized.Techniques such as automatic secondary elec...In this study,the pitting corrosion behavior of 13Cr4Ni martensitic stainless steel(BASE)and that modified with rare earth(REM)in 0.1 mol/L Na Cl solution were characterized.Techniques such as automatic secondary electron microscope(ASPEX PSEM detector),scanning electron microscope(SEM),transmission electron microscope(TEM),scanning Kelvin probe force microscope(SKP),potentiodynamic and potentiostatic polarizations were employed.The results obtained indicate that BASE steel contains Al_(2)O_(3)/Mn S,Al_(2)O_(3) and Mn S inclusions,while REM steels contain(La,Ce,Cr,Fe)-O and(La,Ce,Cr,Fe)-O-S inclusions.Compared with BASE steel,REM steel is more susceptible to induce the metastable pitting nucleation and repassivation,whereas it restrains the transition from metastable pitting to stable pitting.Adding 0.021%rare earth element to BASE steel can reduce the number and area of inclusions,while that of 0.058%can increase the number and enlarged the size of inclusions,which is also the reason that pitting corrosion resistance of 58 REM steel is slightly lower than that of 21 REM steel.In the process of pitting corrosion induced by Al_(2)O_(3)/Mn S inclusions,Mn S is preferentially anodic dissolved,and also the matrix contacted with Al_(2)O_(3) is subsequently anodic dissolved.For REM steels,anodic dissolution preferentially occurs at the boundary between inclusions and matrix,while(La,Ce,Cr,Fe)-O inclusions chemically dissolve in local acidic environment or are separated from steel matrix.The chemically dissolved substance(La^(3+) and Ce^(3+))of(La,Ce,Cr,Fe)-O inclusions are concentrated in pitting pits,which inhibits its continuous growth.展开更多
A constitutive model incorporating the influence of strain developed based on the Arrhenius equation by considering the variation of material constants as a fifth polynomial function of strain is presented. Materials ...A constitutive model incorporating the influence of strain developed based on the Arrhenius equation by considering the variation of material constants as a fifth polynomial function of strain is presented. Materials con- stants are fit to data from hot compression tests of 70Cr3Mo steel used for back-up roll at the temperatures from 1 173 to 1 473 K and strain rates from 0.01 to 10 s ~ by using a Gleeble-1500D thermo-mechanieal simulator. The de- veloped constitutive model is then used to predict the flow stress under all the tested conditions. The statistical pa- rameters of correlation coefficient and average absolute relative error are used to analyze the predictable efficiency and the values are 0. 997 and 3. 64%, respectively. The results show a good agreement between experimental stress and predicted stress.展开更多
9Cr3W3 CoB steels are developed to serve at the temperature range of 620-650℃,and have been recognized as the most promising martensitic heat-resistant steels for supercritical power plants.Due to the high W and Co c...9Cr3W3 CoB steels are developed to serve at the temperature range of 620-650℃,and have been recognized as the most promising martensitic heat-resistant steels for supercritical power plants.Due to the high W and Co contents,the Fe_(2)W Laves phase in such 9Cr3W3 CoB steel possesses some specialties in thermodynamics.In the present research,it was found that even when aged at 800℃in the 9Cr3W3 CoB steel,instead of dissolving,Laves phase formed after 50 h and kept on increasing in size and number density until 1000 h,indicating that the Laves phase was marching for the thermodynamic equilibrium during aging.In this thermodynamic process,the W-rich M_(3)B_(2)borides in as-received steel and M23C6 carbides were revealed to dissolve,supporting the growth of Laves phase.SEM investigation indicates that Laves phase tended to form clusters,and finally grow as a unit bulk Laves phase with an irregular shape.Besides,Laves phase nucleated next to M23C6 carbides and enwrapped them inside at 800℃.In addition,the growth processes of Laves phase and M23C6 carbides were a competitive procedure,the coarsening of M23C6 carbides was prior to the growth of Laves phase at 750℃while the growth of Laves phase was prior to the coarsening of M23C6 carbides at 800℃.展开更多
文摘The fatigue behaviors of 48MnV steel, both uncoated and coated with different thicknesses of 3Cr13 deposits using twin arc spraying, were investigated. The fatigue properties of the 48MnV steel, determined under axial loading conditions, can be substantially decreased by coating 3Cr13 films, deposited by twin arc spraying. And the fatigue behavior of the thinner coatings is better than that of the thicker ones, of which the fatigue limits decrease by 9%[CD*2]14%. The decrease in fatigue life attributes to the less mechanical properties of the coatings in comparison with those of the substrate, their relative bad bonding strength and trapped oxide or Al2O3 particles retain in the matrix after blasting responsible for the initiation of fatigue cracks.
基金Project(51171011)supported by the National Science Foundation of China
文摘The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.
基金Project(2011CB706802)supported by the National Basic Research Program of ChinaProject(2012ZX04010-081)supported by National Science and Technology Major Program of China
文摘A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.
文摘The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.
文摘The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.
文摘By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.
文摘Determination was carried out of fatigue crack propagation rate of steel 65Cr5Mo3W2VSiTi (LM2)with various bainite contents and M/B duplex structure tempered at various tempera- tures.The threshold value of fatigue for each processing was estimated by experimental data. The mechanism for fatigue crack propagation of M/B duplex structure in steel LM2 seems to be non-continuous.The calculated fatigue crack micro-propagation rates are found to agree with the experimental data.
基金Project Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.
基金National Key Research and Development Program of China(2016YFC0401205).
文摘The addition of Ni element into steel to prolong the service life of coated steel was investigated in marine atmospheric environment by laboratory simulated accelerated experiment.The scanning electron microscope and electron probe microanalysis combined with electrochemical impedance spectroscopy were used to characterize coated steel properties and examined the anti-corrosion performance.The results showed that 3 wt.%Ni-advanced steel(3Ni steel)substrate obviously delayed the failure time of coating compared to carbon steel,therefore prolonging the service life of coating on the steel.X-ray diffraction patterns for the corrosion products under the scratched coating on 3Ni steel exhibited that FeNi_(2)O_(4) and Fe_(2)O_(3) occurred in the corrosion product of 3Ni steel.It was also found that Ni element enriched in the product layer through analyzing the appearance and composition of corrosion products by electron probe micro-analysis.Chloride ions were blocked out of product by the enrichment of Ni element in rust layer.
基金financially supported by the National Key R&D Program of China (Grant No. 2016YFB0300600)the National Natural Science Foundation of China (Grant No. 51604074)
文摘Compared with the traditional atm ospheric carburization, low-pressure carburization has the benefits of producing no surface oxidation and leaving fine, uniformly dispersed carbides in the carburized layer. However, the process param eters for low-pressure carburization of 16Cr3NiWMoVNbE steel have yet to be optimized. Thus, we use the saturation-value method to optimize these parameters for aviation-gear materials. Toward this end, the m icrostructure and properties of 16Cr3NiWMoVNbE steel after different carburization processes are studied by optical microscopy, scanning electron microscopy, transm ission electron microscopy, and electron probe microanalysis. Considering the saturated austenite carbon concentration, we propose a model of carbon flux and an alloy coefficient for low -pressure carburization to reduce the carbon concentration in austenite and avoid the surface carbide network. At the early stage of carburization (30 s), the gas-solid interface has a higher concentration gradient. The averaging method is not ideal in practical applications, but the carbon flux measured by using the segm ented average m ethod is 2.5 times that measured by the overall average method, which is ideal in practical applications. The corresponding carburization tim e is reduced by 60%. By using the integral average method, the actual carburization time increases, which leads to the rapid form ation of carbide on the surface and affects the entire carburization process. Nb and Wcombine with C to form carbides, which hinders carbon diffusion and consumes carbon, resulting in a sharp decrease in the rate of C diffusion in austenite (the diffusion rate is reduced by 52% for 16Cr3NiWMoVNbE steel). By changing the diffusion coefficient model and comparing the hardness gradient of different processes, the depth of the actual layer is found to be very similar to the design depth.
基金supported by the National Natural Science Foundation of China(No.51801219)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019193)+1 种基金the Scientific Research Project of China Three Gorges Corporation(No.JD-YJ-05006)the National Key Research and Development Program of China(No.2017YFB0702302)。
文摘In this study,the pitting corrosion behavior of 13Cr4Ni martensitic stainless steel(BASE)and that modified with rare earth(REM)in 0.1 mol/L Na Cl solution were characterized.Techniques such as automatic secondary electron microscope(ASPEX PSEM detector),scanning electron microscope(SEM),transmission electron microscope(TEM),scanning Kelvin probe force microscope(SKP),potentiodynamic and potentiostatic polarizations were employed.The results obtained indicate that BASE steel contains Al_(2)O_(3)/Mn S,Al_(2)O_(3) and Mn S inclusions,while REM steels contain(La,Ce,Cr,Fe)-O and(La,Ce,Cr,Fe)-O-S inclusions.Compared with BASE steel,REM steel is more susceptible to induce the metastable pitting nucleation and repassivation,whereas it restrains the transition from metastable pitting to stable pitting.Adding 0.021%rare earth element to BASE steel can reduce the number and area of inclusions,while that of 0.058%can increase the number and enlarged the size of inclusions,which is also the reason that pitting corrosion resistance of 58 REM steel is slightly lower than that of 21 REM steel.In the process of pitting corrosion induced by Al_(2)O_(3)/Mn S inclusions,Mn S is preferentially anodic dissolved,and also the matrix contacted with Al_(2)O_(3) is subsequently anodic dissolved.For REM steels,anodic dissolution preferentially occurs at the boundary between inclusions and matrix,while(La,Ce,Cr,Fe)-O inclusions chemically dissolve in local acidic environment or are separated from steel matrix.The chemically dissolved substance(La^(3+) and Ce^(3+))of(La,Ce,Cr,Fe)-O inclusions are concentrated in pitting pits,which inhibits its continuous growth.
文摘A constitutive model incorporating the influence of strain developed based on the Arrhenius equation by considering the variation of material constants as a fifth polynomial function of strain is presented. Materials con- stants are fit to data from hot compression tests of 70Cr3Mo steel used for back-up roll at the temperatures from 1 173 to 1 473 K and strain rates from 0.01 to 10 s ~ by using a Gleeble-1500D thermo-mechanieal simulator. The de- veloped constitutive model is then used to predict the flow stress under all the tested conditions. The statistical pa- rameters of correlation coefficient and average absolute relative error are used to analyze the predictable efficiency and the values are 0. 997 and 3. 64%, respectively. The results show a good agreement between experimental stress and predicted stress.
基金financially supported by the National Natural Science Foundation of China(No.51971226)the National Basic Research Program of China(No.2017YFB0305201)。
文摘9Cr3W3 CoB steels are developed to serve at the temperature range of 620-650℃,and have been recognized as the most promising martensitic heat-resistant steels for supercritical power plants.Due to the high W and Co contents,the Fe_(2)W Laves phase in such 9Cr3W3 CoB steel possesses some specialties in thermodynamics.In the present research,it was found that even when aged at 800℃in the 9Cr3W3 CoB steel,instead of dissolving,Laves phase formed after 50 h and kept on increasing in size and number density until 1000 h,indicating that the Laves phase was marching for the thermodynamic equilibrium during aging.In this thermodynamic process,the W-rich M_(3)B_(2)borides in as-received steel and M23C6 carbides were revealed to dissolve,supporting the growth of Laves phase.SEM investigation indicates that Laves phase tended to form clusters,and finally grow as a unit bulk Laves phase with an irregular shape.Besides,Laves phase nucleated next to M23C6 carbides and enwrapped them inside at 800℃.In addition,the growth processes of Laves phase and M23C6 carbides were a competitive procedure,the coarsening of M23C6 carbides was prior to the growth of Laves phase at 750℃while the growth of Laves phase was prior to the coarsening of M23C6 carbides at 800℃.