Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and fri...The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.展开更多
3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evalu...3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.展开更多
To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughnes...This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.展开更多
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro...Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.展开更多
目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进...目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进行免疫组化(Caspase-3、Bax、Bcl-2)染色。观察植入材料周围骨组织细胞生长和凋亡的表达情况,并利用Imagepro Plus 6.0图像分析软件分析棕染细胞的灰度值。然后利用SPSS 17.0统计软件进行独立样本t检验分析结果。结果实验动物麻醉及手术效果较理想。植入材料与骨结合紧密、无松动,大部分植入材料表面有新生骨组织。光镜下观察,Caspase-3、Bcl-2、Bax免疫组化呈阳性反应骨细胞胞质及部分细胞膜棕褐色染色。C/C-SiC实验组棕褐色染色平均灰度值与纯钛对照组棕褐色染色平均灰度值相比无显著差别。结论 C/C-SiC复合材料植入兔股骨内术后3个月,材料周围骨细胞凋亡程度与纯钛材料无显著差别。展开更多
Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive dam...Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.展开更多
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金Project(46-QP-2009)supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.
基金Funded by the National Natural Science Foundation of China(No.50875036)
文摘3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.
基金Supported by the National Natural Science Foundation of China (No. 50875036)
文摘This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_165)+2 种基金the Fundamental Research Funds for the Central Universities,Aeronautical Science Foundation of China(No.2012ZB52026)Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
文摘目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进行免疫组化(Caspase-3、Bax、Bcl-2)染色。观察植入材料周围骨组织细胞生长和凋亡的表达情况,并利用Imagepro Plus 6.0图像分析软件分析棕染细胞的灰度值。然后利用SPSS 17.0统计软件进行独立样本t检验分析结果。结果实验动物麻醉及手术效果较理想。植入材料与骨结合紧密、无松动,大部分植入材料表面有新生骨组织。光镜下观察,Caspase-3、Bcl-2、Bax免疫组化呈阳性反应骨细胞胞质及部分细胞膜棕褐色染色。C/C-SiC实验组棕褐色染色平均灰度值与纯钛对照组棕褐色染色平均灰度值相比无显著差别。结论 C/C-SiC复合材料植入兔股骨内术后3个月,材料周围骨细胞凋亡程度与纯钛材料无显著差别。
基金Sponsored by the Pre⁃Research Foundation of Shenyang Aircraft Design and Research Institute,Aviation Industry Corporation of China(Grant No.JH20128255).
文摘Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.