Calculation of the interactive force between two horizontally stacked circular uniformly charged rings placed along the common vertical axis conducive to nonlinear oscillations under gravity has been addressed [1]. Al...Calculation of the interactive force between two horizontally stacked circular uniformly charged rings placed along the common vertical axis conducive to nonlinear oscillations under gravity has been addressed [1]. Although challenging, nonetheless the scope of the study limited to uniform charge distributions of the rings. Here we extend the analysis considering a charged ellipse with a nonuniform, curvature-dependent elliptic charge distribution exerting a force on a point-like charge placed on the vertical symmetry axis. Nonuniform charge distribution and its impact on various practical scenarios are not a common theme addressed in literature. Applying Computer Algebra System (CAS) particularly <em>Mathematica</em> [2], we analyze the issue on hand augmenting the traditional scope of interest. We overcome the CPU expensive symbolic computation following our newly developed numeric/symbolic method [1]. For comprehensive understanding, we simulate the nonlinear oscillations.展开更多
In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle pl...In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle placed on the symmetry axis to oscillate in a delayed/hesitant nonlinear mode. The charge distribution is a 3D twisted line creating nontrivial electric field causing an unexpected oscillation that is non-orthodox defying the common sense. Calculation of this research flavored investigation is entirely based on utilities accompanied with Computer Algebra Systems (CAS) especially <em>Mathematic</em> [1]. The characteristics of the delayed oscillations in addition to embodying classic graphics displaying the time-dependent kinematic quantities are augmented including various phase diagrams signifying the nonlinear oscillations. The output of our investigation is compared to nonlinear non-delayed oscillations revealing fresh insight. For comprehensive understanding of the hesitant oscillator a simulation program is crafted clarifying visually the scenario on hand.展开更多
文摘Calculation of the interactive force between two horizontally stacked circular uniformly charged rings placed along the common vertical axis conducive to nonlinear oscillations under gravity has been addressed [1]. Although challenging, nonetheless the scope of the study limited to uniform charge distributions of the rings. Here we extend the analysis considering a charged ellipse with a nonuniform, curvature-dependent elliptic charge distribution exerting a force on a point-like charge placed on the vertical symmetry axis. Nonuniform charge distribution and its impact on various practical scenarios are not a common theme addressed in literature. Applying Computer Algebra System (CAS) particularly <em>Mathematica</em> [2], we analyze the issue on hand augmenting the traditional scope of interest. We overcome the CPU expensive symbolic computation following our newly developed numeric/symbolic method [1]. For comprehensive understanding, we simulate the nonlinear oscillations.
文摘In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle placed on the symmetry axis to oscillate in a delayed/hesitant nonlinear mode. The charge distribution is a 3D twisted line creating nontrivial electric field causing an unexpected oscillation that is non-orthodox defying the common sense. Calculation of this research flavored investigation is entirely based on utilities accompanied with Computer Algebra Systems (CAS) especially <em>Mathematic</em> [1]. The characteristics of the delayed oscillations in addition to embodying classic graphics displaying the time-dependent kinematic quantities are augmented including various phase diagrams signifying the nonlinear oscillations. The output of our investigation is compared to nonlinear non-delayed oscillations revealing fresh insight. For comprehensive understanding of the hesitant oscillator a simulation program is crafted clarifying visually the scenario on hand.