Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
3D NoC在同构多核系统中相比2D NoC具有更为优越的性能。本文在研究3DMesh结构的基础上,对拓扑结构中的平均延时和理想吞吐量进行了理论上的评估,并提出了一种基于3DMesh的新的静态路由算法,最后运用NS2网络仿真软件对其进行仿真和比较...3D NoC在同构多核系统中相比2D NoC具有更为优越的性能。本文在研究3DMesh结构的基础上,对拓扑结构中的平均延时和理想吞吐量进行了理论上的评估,并提出了一种基于3DMesh的新的静态路由算法,最后运用NS2网络仿真软件对其进行仿真和比较。实验结果显示,新的路由算法可以有效地提高吞吐量,并在大规模数据传输时不容易造成阻塞,表现了较好的性能。展开更多
Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.He...Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.展开更多
Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our appro...Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our approach is that it uses a new Clifford-multiwavelet transform to insert copyright data in a multiresolution domain,allowing us to greatly expand the size of the watermark.After that,our method does two rounds of insertion,each applying a different type of Clifford-wavelet transform.Before being placed into the Clifford-multiwavelet coefficients,the watermark,which is a mixture of the mesh description,source mesh signature(produced using SHA512),and a logo encrypted using the RSA(Ronald Shamir Adleman)technique,is encoded using Turbo-code.Using the Least Significant Bit method steps,data embedding involves modulation and insertion processes.Finally,the watermarked mesh is reconstructed using the inverse Cliffordmultiwavelet transform.Due to the utilization of a hybrid insertion domain,our technique has demonstrated a very high insertion rate while retaining mesh quality.The mesh is watermarked,and the extracted data is acquired in real-time.Our approach is also resistant to the most common types of attacks.Our findings reveal that the current approach improves on previous efforts.展开更多
Background: The experience of short term results of laparoscopic inguinal hernia repair using 3D mesh in a developing country is reviewed. Methods: From January 2012 to February 2014, 53 patients underwent laparoscopi...Background: The experience of short term results of laparoscopic inguinal hernia repair using 3D mesh in a developing country is reviewed. Methods: From January 2012 to February 2014, 53 patients underwent laparoscopic inguinal hernioplasty. A retrospective case series of 53 consecutive patients undergoing TEP/TAPP by a single surgical team was followed prospectively with a focused physical examination and interview. 4 out of 53 patients had recurrent hernia following open repairs and 49 had primary hernias. Data collected included operative time, intraoperative bleeding, intraoperative difficulties, immediate postoperative pain, chronic groin pain, recurrence, sensory disturbance, activity or occupational limitation and personal satisfaction. Results: All the patients were male aged 32 to 75 years with a mean age of 53.5 years. Mean operative time was 37.4 minutes;intraoperative dissection, blood loss were less;and immediate postoperative pain was negligible as assessed by VAS. There was no mortality or major morbidity. Mean follow-up was 12 months (2 to 18 months). Follow-up was completed by interview and physical examination. Hernia was not found to recur during the follow up period. Chronic pain occurred in 2 patients (3.7%), which was mild in nature. Ninety-seven percent of patients were satisfied with their repair and would or had recommended TEP/TAPP to others using 3D Mesh. Conclusions: Short-term results of TEP/TAPP hernia repair using 3D mesh demonstrated to be an effective and safe procedure with low prevalence of chronic pain that is generally of a mild, infrequent nature. It was also concurred that there is decrease in operative time. Manipulation of mesh was significantly reduced. Intraoperative bleeding and use of post operative analgesia was reduced considerably. There was no recurrence, however the cost of the mesh increased the overall cost of the procedure acting as a limiting factor in a developing country.展开更多
With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of...With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.展开更多
Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarki...Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarking algorithms to achieve suffcient robustness for the actual application scenarios.In this paper,we propose the first deep learning-based 3D mesh watermarking network,which can provide a more general framework for this problem.In detail,we propose an end-to-end network,consisting of a watermark embedding sub-network,a watermark extracting sub-network and attack layers.We employ the topology-agnostic graph convolutional network(GCN)as the basic convolution operation,therefore our network is not limited by registered meshes(which share a fixed topology).For the specific application scenario,we can integrate the corresponding attack layers to guarantee adaptive robustness against possible attacks.To ensure the visual quality of watermarked 3D meshes,we design the curvature consistency loss function to constrain the local geometry smoothness of watermarked meshes.Experimental results show that the proposed method can achieve more universal robustness while guaranteeing comparable visual quality.展开更多
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.
基金financially supported by the National Natural Science Foundation of China(51901249,U1904216)。
文摘Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.
基金This research work was funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17567)。
文摘Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our approach is that it uses a new Clifford-multiwavelet transform to insert copyright data in a multiresolution domain,allowing us to greatly expand the size of the watermark.After that,our method does two rounds of insertion,each applying a different type of Clifford-wavelet transform.Before being placed into the Clifford-multiwavelet coefficients,the watermark,which is a mixture of the mesh description,source mesh signature(produced using SHA512),and a logo encrypted using the RSA(Ronald Shamir Adleman)technique,is encoded using Turbo-code.Using the Least Significant Bit method steps,data embedding involves modulation and insertion processes.Finally,the watermarked mesh is reconstructed using the inverse Cliffordmultiwavelet transform.Due to the utilization of a hybrid insertion domain,our technique has demonstrated a very high insertion rate while retaining mesh quality.The mesh is watermarked,and the extracted data is acquired in real-time.Our approach is also resistant to the most common types of attacks.Our findings reveal that the current approach improves on previous efforts.
文摘Background: The experience of short term results of laparoscopic inguinal hernia repair using 3D mesh in a developing country is reviewed. Methods: From January 2012 to February 2014, 53 patients underwent laparoscopic inguinal hernioplasty. A retrospective case series of 53 consecutive patients undergoing TEP/TAPP by a single surgical team was followed prospectively with a focused physical examination and interview. 4 out of 53 patients had recurrent hernia following open repairs and 49 had primary hernias. Data collected included operative time, intraoperative bleeding, intraoperative difficulties, immediate postoperative pain, chronic groin pain, recurrence, sensory disturbance, activity or occupational limitation and personal satisfaction. Results: All the patients were male aged 32 to 75 years with a mean age of 53.5 years. Mean operative time was 37.4 minutes;intraoperative dissection, blood loss were less;and immediate postoperative pain was negligible as assessed by VAS. There was no mortality or major morbidity. Mean follow-up was 12 months (2 to 18 months). Follow-up was completed by interview and physical examination. Hernia was not found to recur during the follow up period. Chronic pain occurred in 2 patients (3.7%), which was mild in nature. Ninety-seven percent of patients were satisfied with their repair and would or had recommended TEP/TAPP to others using 3D Mesh. Conclusions: Short-term results of TEP/TAPP hernia repair using 3D mesh demonstrated to be an effective and safe procedure with low prevalence of chronic pain that is generally of a mild, infrequent nature. It was also concurred that there is decrease in operative time. Manipulation of mesh was significantly reduced. Intraoperative bleeding and use of post operative analgesia was reduced considerably. There was no recurrence, however the cost of the mesh increased the overall cost of the procedure acting as a limiting factor in a developing country.
基金This work was supprted by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.
基金supported in part by the Natural Science Foundation of China underGrant 62072421,62002334,62102386,62121002 and U20B2047Anhui Science Foundation of China under Grant 2008085QF296+1 种基金Exploration Fund Project of University of Science and Technology of China under Grant YD3480002001by Fundamental Research Funds for the Central Universities WK5290000001.
文摘Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarking algorithms to achieve suffcient robustness for the actual application scenarios.In this paper,we propose the first deep learning-based 3D mesh watermarking network,which can provide a more general framework for this problem.In detail,we propose an end-to-end network,consisting of a watermark embedding sub-network,a watermark extracting sub-network and attack layers.We employ the topology-agnostic graph convolutional network(GCN)as the basic convolution operation,therefore our network is not limited by registered meshes(which share a fixed topology).For the specific application scenario,we can integrate the corresponding attack layers to guarantee adaptive robustness against possible attacks.To ensure the visual quality of watermarked 3D meshes,we design the curvature consistency loss function to constrain the local geometry smoothness of watermarked meshes.Experimental results show that the proposed method can achieve more universal robustness while guaranteeing comparable visual quality.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60564001) 国家教育部新世纪人才支持计划(the New Century Excellent Talent Foundation from MOE of China under Grant No.NCET 06- 0756)广西研究生创新项目( No. 2006105930812M21)