期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Face recognition using SIFT features under 3D meshes 被引量:1
1
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3d face recognition seale-invariant feature transform (SIFT) expression OCCLUSION large pose changes 3d meshes
下载PDF
Exploring Local Regularities for 3D Object Recognition
2
作者 TIAN Huaiwen QIN Shengfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1104-1113,共10页
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviat... In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness. 展开更多
关键词 stepwise 3d reconstruction localized regularities 3d object recognition polyhedral objects line drawing
下载PDF
Summed volume region selection based three-dimensional automatic target recognition for airborne LIDAR 被引量:2
3
作者 Qi-shu Qian Yi-hua Hu +2 位作者 Nan-xiang Zhao Min-le Li Fu-cai Shao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期535-542,共8页
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa... Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%. 展开更多
关键词 3d automatic target recognition Point cloud LIDAR AIRBORNE Global feature descriptor
下载PDF
3D face recognition:A comprehensive survey in 2022 被引量:1
4
作者 Yaping Jing Xuequan Lu Shang Gao 《Computational Visual Media》 SCIE EI CSCD 2023年第4期657-685,共29页
In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techni... In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic. 展开更多
关键词 3d face recognition 3d face databases deep learning local features global feature
原文传递
A penetrable interactive 3D display based on motion recognition(Invited Paper) 被引量:1
5
作者 苏忱 夏新星 +4 位作者 李海峰 刘旭 匡翠方 夏军 王保平 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第6期26-29,共4页
Based on light field reconstruction and motion recognition technique, a penetrable interactive floating 3D display system is proposed. The system consists of a high-frame-rate projector, a flat directional diffusing s... Based on light field reconstruction and motion recognition technique, a penetrable interactive floating 3D display system is proposed. The system consists of a high-frame-rate projector, a flat directional diffusing screen, a high-speed data transmission module, and a Kinect somatosensory device. The floating occlusioncorrect 3D image could rotate around some axis at different speeds according to user's hand motion. Eight motion directions and speed are detected accurately, and the prototype system operates efficiently with a recognition accuracy of 90% on average. 展开更多
关键词 A penetrable interactive 3d display based on motion recognition HIGH DMD
原文传递
3D face recognition based on principal axes registration and fusing features
6
作者 Hongxia ZHANG Yanning ZHANG +2 位作者 Zhe GUO Zenggang LIN Chao ZHANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期347-352,共6页
A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach ad... A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database. 展开更多
关键词 3d face recognition principal axes registration(PAR) fusion feature weighted voting
原文传递
Spatiotemporal emotion recognition based on 3D time-frequency domain feature matrix
7
作者 Chao Hao Lian Weifang Liu Yongli 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期62-72,共11页
The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals... The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively. 展开更多
关键词 spatiotemporal emotion recognition model 3-dimensinal(3d)feature matrix time-frequency features multivariate convolutional neural network(MVCNN) long short-term memory(LSTM)
原文传递
Illumination Invariant Recognition of Three-Dimensional Texture in Color Images 被引量:3
8
作者 JieYang MohammedAl-Rawi 《Journal of Computer Science & Technology》 SCIE EI CSCD 2005年第3期378-388,共11页
In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination inv... In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination invariant recognition of 3D color texture. Complex valuedmoments (i.e., Zernike moments) and affine moment normalization are used in the derivation ofillumination affine invariants where the real valued affine moment invariants fail to provide affineinvariants that are independent of illumination changes. Three different moment normalizationmethods have been used, two of which are based on affine moment normalization technique and thethird is based on reducing the affine transformation to a Euclidian transform. It is shown that fora change of illumination and orientation, the affinely normalized Zernike moment matrices arerelated by a linear transform. Experimental results are obtained in two tests: the first is usedwith textures of outdoor scenes while the second is performed on the well-known CUReT texturedatabase. Both tests show high recognition efficiency of the proposed recognition methods. 展开更多
关键词 3d color texture recognition illumination invariance affine momentnormalization zernike moment affine invariant
原文传递
Rotation Scaling and Translation Invariants of 3D Radial Shifted Legendre Moments 被引量:1
9
作者 Mostafa El Mallahi Jaouad E1Mekkaoui +2 位作者 Areal Zouhri Hicham Amakdouf Hassan Qjidaa 《International Journal of Automation and computing》 EI CSCD 2018年第2期169-180,共12页
This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial sh... This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image. 展开更多
关键词 3d radial complex moments 3d radial shifted Legendre radial moments radial shifted Legendre polynomials 3d imagereconstruction 3d rotation scaling translation invariants 3d image recognition computational complexities.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部