期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell Simulated by an 1D Multi-plate Heat-Transfer Model and a 3D Numerical Simulation Model
1
作者 Akira Nishimura Masashi Baba +3 位作者 Kotaro Osada Takenori Fukuoka MasafumiHirota Eric Hu 《Journal of Energy and Power Engineering》 2015年第8期687-704,共18页
The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell o... The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable. 展开更多
关键词 Polymer electrolyte fuel cell 1D multi-plate heat-transfer model 3d numerical simulation model temperaturedistribution.
下载PDF
An integrated spatial planning of the mountainous landscapes for ski sports in a case area at the eastern Türkiye
2
作者 SATIR Onur TOSUN Busra +2 位作者 COSKUN OZYOL Funda OZDEMIR Omer Faruk BERBEROGLU Suha 《Journal of Mountain Science》 SCIE CSCD 2024年第3期754-767,共14页
Mountainous regions have disadvantages in economic development because of harsh physical and climatic conditions.However,winter tourism activities are one of the key components for supporting economic development in t... Mountainous regions have disadvantages in economic development because of harsh physical and climatic conditions.However,winter tourism activities are one of the key components for supporting economic development in the highlands.Establishing a ski resort area supports direct and indirect employment in a region,and it stops immigration from mountainous regions to other places.This research aimed to assess the potential ski areas using a multi criteria evaluation technique in the Van region which is located in the eastern part of Türkiye.In this context,snow cover duration,sun effect,slope,slope length,elevation,population density,distance from main roads and lake visibility were used as input factors in the decision making process.Each factor was standardized using a fuzzy technique based on existing well-known ski centers in Türkiye.The weight of inputs was defined by applying a survey to the professional skiers.The most important factors were detected as transportation opportunities and snow covers whereas,the least important factors were elevation and population density.Additionally,lake visibility was very important to make a difference from other existing facilities in the region.Therefore,it was included as constraints and lake visible areas were extracted at the final stage of the research.Potential ski areas were mapped in three levels as professional,intermediate and beginner skiers.One of the suitable areas was selected as a sample projection and for the 3D simulation of the ski investment area.Potential costs and benefits were discussed.It was found that a ski tourism area investment can be amortized in 3 years in the region. 展开更多
关键词 Winter sports and tourism Decision making 3d simulation and modelling Landscape planning GIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部