期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于3D UNet结合Transformer的肝脏及肝肿瘤自动分割
被引量:
1
1
作者
戴振晖
简婉薇
+5 位作者
朱琳
张白霖
靳怀志
杨耕
谭翔
王学涛
《中国医疗设备》
2023年第1期42-47,共6页
目的肝脏和肝肿瘤分割是肝癌放疗计划设计的重要步骤,本文提出新型自动分割模型,以实现肝脏和肝肿瘤的精确分割。方法在3D UNet深度神经网络中加入了残差模块和Swim Transformer模块,提出一个新型的卷积和Transformer结合的Res-Swim-UNe...
目的肝脏和肝肿瘤分割是肝癌放疗计划设计的重要步骤,本文提出新型自动分割模型,以实现肝脏和肝肿瘤的精确分割。方法在3D UNet深度神经网络中加入了残差模块和Swim Transformer模块,提出一个新型的卷积和Transformer结合的Res-Swim-UNet模型。在LiTS公共数据集上对比了所提出方法与先前方法的性能,并在本地数据集上验证了Res-Swim-UNet模型的泛化能力。结果Res-Swim-UNet模型在LiTS公共数据集上肝脏分割结果的Dice相似性系数(Dice Similarity Coefficient,DSC)、体积重叠误差(Volumetric Overlap Error,VOE)分别是0.957、0.522,相对于UNet模型DSC提高了1.6%,VOE降低了1.3%;肝肿瘤分割结果的DSC、VOE分别是0.672、0.617,相对于UNet模型DSC提高了13.5%,VOE降低了5.9%。在本地数据集上肝脏分割结果的DSC、VOE分别是0.895、0.552,肝肿瘤分割结果的DSC、VOE分别是0.589、0.706。结论本文提出的Res-Swim-UNet模型可以有效提高CT图像中肝脏和肝肿瘤的分割效果,且该模型在迁移到本地数据时仍具有较高的分割精度。该模型可以用于提高医生勾画靶区的效率。
展开更多
关键词
肝脏
肝肿瘤
自动分割
3d
unet
深度神经网络
Swim
Transformer模块
下载PDF
职称材料
题名
基于3D UNet结合Transformer的肝脏及肝肿瘤自动分割
被引量:
1
1
作者
戴振晖
简婉薇
朱琳
张白霖
靳怀志
杨耕
谭翔
王学涛
机构
广州中医药大学第二附属医院放射治疗区
出处
《中国医疗设备》
2023年第1期42-47,共6页
基金
广州市科技计划项目(202102010264)
广东省中医院中医药科技专项(ZY2022YL07)。
文摘
目的肝脏和肝肿瘤分割是肝癌放疗计划设计的重要步骤,本文提出新型自动分割模型,以实现肝脏和肝肿瘤的精确分割。方法在3D UNet深度神经网络中加入了残差模块和Swim Transformer模块,提出一个新型的卷积和Transformer结合的Res-Swim-UNet模型。在LiTS公共数据集上对比了所提出方法与先前方法的性能,并在本地数据集上验证了Res-Swim-UNet模型的泛化能力。结果Res-Swim-UNet模型在LiTS公共数据集上肝脏分割结果的Dice相似性系数(Dice Similarity Coefficient,DSC)、体积重叠误差(Volumetric Overlap Error,VOE)分别是0.957、0.522,相对于UNet模型DSC提高了1.6%,VOE降低了1.3%;肝肿瘤分割结果的DSC、VOE分别是0.672、0.617,相对于UNet模型DSC提高了13.5%,VOE降低了5.9%。在本地数据集上肝脏分割结果的DSC、VOE分别是0.895、0.552,肝肿瘤分割结果的DSC、VOE分别是0.589、0.706。结论本文提出的Res-Swim-UNet模型可以有效提高CT图像中肝脏和肝肿瘤的分割效果,且该模型在迁移到本地数据时仍具有较高的分割精度。该模型可以用于提高医生勾画靶区的效率。
关键词
肝脏
肝肿瘤
自动分割
3d
unet
深度神经网络
Swim
Transformer模块
Keywords
liver
liver tumor
automatic segmentation
3d unet deep neural network
swim transformer module
分类号
R815.6 [医药卫生—放射医学]
R197.39 [医药卫生—卫生事业管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于3D UNet结合Transformer的肝脏及肝肿瘤自动分割
戴振晖
简婉薇
朱琳
张白霖
靳怀志
杨耕
谭翔
王学涛
《中国医疗设备》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部