This paper theoretically analyzes and researches the coordinate frames of a 3D vision scanning system, establishes the mathematic model of a system scanning process, derives the relationship between the general non-or...This paper theoretically analyzes and researches the coordinate frames of a 3D vision scanning system, establishes the mathematic model of a system scanning process, derives the relationship between the general non-orthonormal sensor coordinate system and the machine coordinate system and the coordinate transformation matrix of the extrinsic calibration for the system.展开更多
The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional con...The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification.展开更多
Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its rec...Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.展开更多
In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The...In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.展开更多
This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two iso...This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two isotropic operators are non-equal quantized andthresholded in an angle, Edge features are extracted after passing a preemphasis transferfunction which can equalize, the noise affection. Binary edge images are decomposed into apyramid structure which is stored and searched using llliffe’s location method. Corre-sponding points are used to determine the range data using triangulation based on an improvedTrivedi’s formula. In calibration the authors set the optical axes of the two cameras parallelto simplify the calculation, A 3 rd order Householder transform is used to solve the compati-ble coupled equations.展开更多
High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system suc...High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.展开更多
The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ...The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.展开更多
A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of...A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.展开更多
The fruit industry has been known as one of the largest businesses in Malaysia,where most of the fruits pass through the peeling process well in advance before the final product as juice in a bottle or slices in a can...The fruit industry has been known as one of the largest businesses in Malaysia,where most of the fruits pass through the peeling process well in advance before the final product as juice in a bottle or slices in a can.The current industrial fruit peeling techniques are passive and inefficient by cutting parts of the pulp of the fruit with peels leading to losses.To avoid this issue,a multi-axis CNC fruit peeler can be used to precisely peel the outer layer with the guidance of a 3D virtual model of fruit.In this work,a new cost-effective method of 3D image reconstruction was developed to convert 36 fruit images captured by a normal RGB camera to a 3D model by capturing a single image every 10 degrees of fruit rotation along a fixed axis.The point cloud data extracted with edge detection were passed to Blender 3D software for meshing in different approaches.The vertical link frame meshing method developed in this research proved a qualitative similarity between the output result and the scanned fruit in a processing time of less than 50 seconds.展开更多
As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is prop...As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.展开更多
As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concep...As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.展开更多
In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include obj...In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.展开更多
Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for ...Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.展开更多
Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR...Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.展开更多
Synthetic Aperture Radar three-dimensional(3D)imaging enables the acquisition of more comprehensive information,making it a recent hotspot in radar imaging.Traditional 3D imaging methods have evolved from 2D and inter...Synthetic Aperture Radar three-dimensional(3D)imaging enables the acquisition of more comprehensive information,making it a recent hotspot in radar imaging.Traditional 3D imaging methods have evolved from 2D and interferometric imaging,combining elevation aperture extension with signal processing techniques.Limitations such as long acquisition or complex system from its imaging mechanism restrict its application.In recent years,rapid development of artificial intelligence has led to a swift advancement in radar,injecting new vitality into SAR 3D imaging.SAR microwave vision 3D imaging theory,which is built upon advanced technologies,has emerged as a new interdisciplinary field for radar imaging.This paper reviews SAR 3D imaging’s history and present situation,and introduces SAR microwave vision.We establish a theoretical framework covering representation models,computational models,processing paradigms and evaluation systems.Additionally,our research progress in this area is discussed,along with future prospects for SAR microwave vision 3D imaging.展开更多
Instead of traditionally using a 3D physical model with many control points on it, a calibration plate with printed chess grid and movable along its normal direction is implemented to provide large area 3D control poi...Instead of traditionally using a 3D physical model with many control points on it, a calibration plate with printed chess grid and movable along its normal direction is implemented to provide large area 3D control points with variable Z values. Experiments show that the approach presented is effective for reconstructing 3D color objects in computer vision system.展开更多
文摘This paper theoretically analyzes and researches the coordinate frames of a 3D vision scanning system, establishes the mathematic model of a system scanning process, derives the relationship between the general non-orthonormal sensor coordinate system and the machine coordinate system and the coordinate transformation matrix of the extrinsic calibration for the system.
基金supported by the Key Project of National Natural Science Foundation of China-Civil Aviation Joint Fund under Grant No.U2033212。
文摘The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification.
文摘Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.
基金wsupported by the Thailand Research Fund and Solimac Automation Co.,Ltd.under the Research and Researchers for Industry Program(RRI)under Grant No.MSD56I0098Office of the Higher Education Commission under the National Research University Project of Thailand
文摘In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.
文摘This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two isotropic operators are non-equal quantized andthresholded in an angle, Edge features are extracted after passing a preemphasis transferfunction which can equalize, the noise affection. Binary edge images are decomposed into apyramid structure which is stored and searched using llliffe’s location method. Corre-sponding points are used to determine the range data using triangulation based on an improvedTrivedi’s formula. In calibration the authors set the optical axes of the two cameras parallelto simplify the calculation, A 3 rd order Householder transform is used to solve the compati-ble coupled equations.
基金National Science and Technology Major Project(No.2016ZX04003001)
文摘High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Grant No.YZ2023H2B013)the Anhui Provincial Key Research and Development Project(Grant No.2022i01020015)the Open Project of Key Laboratory of Conveyance Equipment(East China Jiaotong University),Ministry of Education(KLCE2022-01).
文摘The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.
基金This work is partially supported by the National Natural Science Foundation of China under Grant No. 11672290. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.
文摘A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.
基金the support from the University-Private Matching Fund(UniPRIMA)from the Research Management CentreUniMAPWalta Engineering Sdn.Bhd.
文摘The fruit industry has been known as one of the largest businesses in Malaysia,where most of the fruits pass through the peeling process well in advance before the final product as juice in a bottle or slices in a can.The current industrial fruit peeling techniques are passive and inefficient by cutting parts of the pulp of the fruit with peels leading to losses.To avoid this issue,a multi-axis CNC fruit peeler can be used to precisely peel the outer layer with the guidance of a 3D virtual model of fruit.In this work,a new cost-effective method of 3D image reconstruction was developed to convert 36 fruit images captured by a normal RGB camera to a 3D model by capturing a single image every 10 degrees of fruit rotation along a fixed axis.The point cloud data extracted with edge detection were passed to Blender 3D software for meshing in different approaches.The vertical link frame meshing method developed in this research proved a qualitative similarity between the output result and the scanned fruit in a processing time of less than 50 seconds.
基金The National Natural Science Foundation of China(No.61272223)the National Key Scientific Apparatus Development of Special Item(No.2012YQ170003-5)
文摘As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.
基金the National Natural Science Foundationof China(No.31760345).
文摘As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).In additionsupport of the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,This work has also been supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsosupported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901 and 2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495 and 51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2021A1515012286)Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(Grant No.2022L3049).
文摘Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.
基金the PID2022‐137451OB‐I00 and PID2022‐137629OA‐I00 projects funded by the MICIU/AEIAEI/10.13039/501100011033 and by ERDF/EU.
文摘Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.
基金supported by the National Natural Science Foundation of China(61991420,61991421 and 61991424)
文摘Synthetic Aperture Radar three-dimensional(3D)imaging enables the acquisition of more comprehensive information,making it a recent hotspot in radar imaging.Traditional 3D imaging methods have evolved from 2D and interferometric imaging,combining elevation aperture extension with signal processing techniques.Limitations such as long acquisition or complex system from its imaging mechanism restrict its application.In recent years,rapid development of artificial intelligence has led to a swift advancement in radar,injecting new vitality into SAR 3D imaging.SAR microwave vision 3D imaging theory,which is built upon advanced technologies,has emerged as a new interdisciplinary field for radar imaging.This paper reviews SAR 3D imaging’s history and present situation,and introduces SAR microwave vision.We establish a theoretical framework covering representation models,computational models,processing paradigms and evaluation systems.Additionally,our research progress in this area is discussed,along with future prospects for SAR microwave vision 3D imaging.
基金Supported by the Natural Science Foundation of China (69775022)the State High-Technology Development program of China(863 306ZT04 06 3)
文摘Instead of traditionally using a 3D physical model with many control points on it, a calibration plate with printed chess grid and movable along its normal direction is implemented to provide large area 3D control points with variable Z values. Experiments show that the approach presented is effective for reconstructing 3D color objects in computer vision system.