期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation:A case study 被引量:2
1
作者 Jalloh Abu Bakarr Kyuro Sasaki +1 位作者 Jalloh Yaguba Barrie Abubakarr Karim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期581-585,共5页
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr... In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design. 展开更多
关键词 artificial Neural Network model withGeostatistics (ANNMG)3d geological block modeling Mine designKriging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部