期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Extrusion 3D printing of carbon nanotube-assembled carbon aerogel nanocomposites with high electrical conductivity
1
作者 Lukai Wang Jing Men +4 位作者 Junzong Feng Yonggang Jiang Liangjun Li Yijie Hu Jian Feng 《Nano Materials Science》 EI CAS CSCD 2024年第3期312-319,共8页
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi... Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing. 展开更多
关键词 carbon aerogel Extrusion 3d printing carbon nanotube Electrical conductivity RHEOLOGY
下载PDF
Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites
2
作者 Yuan Chen Lin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期84-93,共10页
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun... In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents. 展开更多
关键词 3d printing Continuous carbon fibre MOdELLING Energy absorption Negative Poisson's ratio
下载PDF
High Strain-Rate and Shock Response of Carbon SupercompositeTM
3
作者 Suman Babu Ukyam Raju P. Mantena +1 位作者 Damian L. Stoddard Arunachalam M. Rajendran 《Open Journal of Composite Materials》 2024年第3期132-145,共14页
This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand ... This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading. 展开更多
关键词 SupercompositeTM GOM Software 3d Reinforcement Milled carbon Fibers Split Hopkinson Pressure Bar (SHPB) Air-Blast Loads
下载PDF
Improvement of visible light-induced photocatalytic performance by Cr-doped SrTiO_3-carbon nitride intercalation compound (CNIC) composite 被引量:2
4
作者 杨明 金效齐 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期310-316,共7页
Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) comp... Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) composite photocatalysts were synthesized. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy, and BET surface area analyzer. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. For maximizing the photodegradation activity of the composite photocatalysts, the optimal CNIC content was determined. The improved photocatalytic activity of the as-prepared Cr-doped Sr Ti O3–CNIC composite photocatalyst may be attributed to the enhancement of photo-generated electron–hole separations at the interface. 展开更多
关键词 PHOTOCATALYSIS carbon nitride intercalation compound (CNIC) Cr-doped SrTiO3 composite
下载PDF
3D Printing of Polylactic Acid Bioplastic–Carbon Fibres and Twisted Kevlar Composites Through Coextrusion Using Fused Deposition Modeling 被引量:2
5
作者 J.Y.Tey W.H.Yeo +1 位作者 Y.J.King W.O.Ding 《Journal of Renewable Materials》 SCIE EI 2020年第12期1671-1680,共10页
Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechan... Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechanical properties which reduced its usability as a functional prototype in a real-world application.In the present study,two PLA composites are created through coextruded with 3K carbon fibres and twisted Kevlar string(as core fibre)to form a fibre reinforced parts(FRP).The mechanical strength of printed parts was examined using ASTM D638 standard with a strain rate of 1 mm/min.It has been demonstrated that the FRPs coextruded with 3K carbon fibres had achieved significant improvement in Young’s modulus(+180.6%,9.205 GPa),ultimate tensile strength(+175.3%,103 MPa)and maximum tensile strain(+21.6%,1.833%).Although the Young’s modulus of Kevlar FRP was found to be similar to as compared to unreinforced PLA(~3.29 GPa),it has gained significant increment in terms of maximum tensile strain(+179.7%,104.64 MPa),and maximum tensile strain(+257%,5.384%).Thus,this study revealed two unique composite materials,in which the 3K carbon FRP can offer stiff and high strength structure while Kevlar FRP offers similar strength but at a higher elasticity. 展开更多
关键词 3d printing Kevlar fibre 3K carbon fibre coextruded reinforced plastic polylactic acid bioplastic
下载PDF
Synthesis and Electrochemical Behaviors of a-MoO_3 Nanobelts/Carbon Nanotubes Composites for Lithium Ion Batteries 被引量:1
6
作者 庄志恒 YANG Chao +1 位作者 SHI Yueli 崔永莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期73-77,共5页
α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM... α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Cyclic voltammogram(CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts/CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts/CNTs composites can be attributed to the effects of the high conductive CNTs network. 展开更多
关键词 a-MoO3 nanobelts carbon nanotubes composite cycling performance electrochemical impedance spectroscopy
下载PDF
La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes as anodes in LaGaO_(3)-based direct carbon solid oxide fuel cells 被引量:2
7
作者 CHEN Tian-yu XIE Yong-min +7 位作者 LU Zhi-bin WANG Liang CHEN Zhe-qin ZHONG Xiao-cong LIU Jia-ming WANG Rui-xiang XU Zhi-feng OUYANG Shao-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1788-1798,共11页
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for... Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs. 展开更多
关键词 direct carbon solid oxide fuel cells anode material La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes Ni nanoparticles
下载PDF
Optical properties of carbon nanotubes and BaTiO3 composite thin films
8
作者 吕国伟 程波林 +4 位作者 沈鸿 陈玉金 周岳亮 陈正豪 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1815-1818,共4页
Multiwalled carbon nanotubes and BaTiO3 composite films have been prepared by pulsed-laser deposition technique at room temperature and high temperature of 600℃, separately. The structures of the composite films are ... Multiwalled carbon nanotubes and BaTiO3 composite films have been prepared by pulsed-laser deposition technique at room temperature and high temperature of 600℃, separately. The structures of the composite films are investigated by using scanning electron microscopy and x-ray diffraction. The optical behaviours of the samples produced at different temperatures are compared with Raman spectroscopy, and UV-visible absorption. And the observation by Z-scan technique reveals that the composite films have a larger optical nonlinearity, and the samples prepared at high temperatures have better transmittance and opposite sign imaginary part of optical third-order nonlinearity. 展开更多
关键词 carbon nanotubes BATIO3 composite optical properties
下载PDF
3D printed aluminum matrix composites with well-defined ordered structures of shear-induced aligned carbon fibers
9
作者 Yunhong Liang Han Wu +2 位作者 Zhaohua Lin Qingping Liu Zhihui Zhang 《Nano Materials Science》 EI CAS CSCD 2022年第4期366-375,共10页
Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical prope... Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement. 展开更多
关键词 3d printing Shear-induced alignment carbon fiber Aluminum matrix composites Powder metallurgy
下载PDF
Fluorescence Detection for H_2PO_4^- based on Carbon Dots/Fe^(3+) Composite
10
作者 范小春 ZHANG Bingyu +2 位作者 丁莉芸 XU Chuang HUANG Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1226-1229,共4页
A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by tr... A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe^(3+) composite was obtained by aqueous mixing of carbon dots and FeCl_3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe^(3+) cations, resulting in the low fluorescence intensity of the carbon dots/Fe^(3+) composite. On the other hand, H_2PO_4^- reduced the concentration of Fe^(3+) by chemical reaction and enhanced the fluorescence of the carbon dots/Fe^(3+) composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe^(3+) composite and the concentration of H_2PO_4^-, and a fine linearity(R2=0.997) was found in the range of H_2PO_4^- concentration of 0.4-12 m M. 展开更多
关键词 H2PO4-detection fluorescence carbon dots/Fe3 composite
下载PDF
Design,progress and challenges of 3D carbon-based thermally conductive networks
11
作者 JING Yuan LIU Han-qing +2 位作者 ZHOU Feng DAI Fang-na WU Zhong-shuai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期844-871,共28页
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a... The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed. 展开更多
关键词 carbon material 3d network GRAPHENE Thermal conductivity Heat transfer
下载PDF
Preparation of three-dimensional braided carbon fiber reinforced mullite composites from a sol with high solid content 被引量:1
12
作者 Wei ZHANG Qing-song MA +1 位作者 Ke-wei DAI Wei-guo MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2249-2255,共7页
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as... To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics andmullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300℃ and thegel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated throughthe route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa anda fracture toughness of 10.9 MPa·m1/2are obtained although the total porosity reaches 26.0%. Oxidation resistances of the compositesat 1200, 1400 and 1600 ℃ were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny massloss and their mechanical properties are well retained after oxidation at 1600 ℃ for 30 min. 展开更多
关键词 carbon fiber reinforced mullite composites Al2O3-SiO2 sol mechanical properties oxidation resistance
下载PDF
Effects of Conductive Carbon Black on Thermal and Electrical Properties of Barium Titanate/Polyvinylidene Fluoride Composites for Road Application
13
作者 Zhenguo Wang Lenan Wang +2 位作者 Yejing Meng Yong Wen Jianzhong Pei 《Journal of Renewable Materials》 SCIE EI 2023年第5期2469-2489,共21页
In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traf... In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traffic signals and street lamps.The barium titanate/polyvinylidene fluoride(BaTiO_(3)/PVDF)composite,the most common hybrid ceramic-polymer system,was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material.Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites.However,few studies have investigated the effect of conductive carbon black on the dielectric and piezoelectric properties of BaTiO_(3)/PVDF composites.In this study,BaTiO_(3)/PVDF/conductive carbon black composites were prepared with various conductive carbon black contents based on the optimum ratio of BaTiO_(3)to PVDF.The effects of conductive carbon black content on the morphologies,thermal performance,conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites were then investigated.The addition of conductive carbon black greatly enhances the conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites,especially when the carbon black content is 0.8%by weight of PVDF.Additionally,the conductive carbon black does not have an obvious effect on the morphologies and thermal stabilities of BaTiO_(3)/PVDF/conductive carbon black composites. 展开更多
关键词 dielectric property piezoelectric property CONdUCTIVITY thermal stability BaTiO_(3)/PVdF composites conductive carbon black
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:2
14
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2d/3d van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
A review of the carbon coating of the silicon anode in highperformance lithium-ion batteries
15
作者 XU Ze-yu SHAO Hai-bo WANG Jian-ming 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期896-917,共22页
In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability... In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested. 展开更多
关键词 Lithium-ion batteries Silicon anode 3d carbon coating carbon
下载PDF
Enhanced Potassium‑Ion Storage of the 3D Carbon Superstructure by Manipulating the Nitrogen‑Doped Species and Morphology 被引量:10
16
作者 Yanhua Li Kui Xiao +7 位作者 Cong Huang Jin Wang Ming Gao Aiping Hu Qunli Tang Binbin Fan Yali Xu Xiaohua Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期1-14,共14页
Potassium-ion batteries(PIBs)are attractive for gridscale energy storage due to the abundant potassium resource and high energy density.The key to achieving high-performance and large-scale energy storage technology l... Potassium-ion batteries(PIBs)are attractive for gridscale energy storage due to the abundant potassium resource and high energy density.The key to achieving high-performance and large-scale energy storage technology lies in seeking eco-efficient synthetic processes to the design of suitable anode materials.Herein,a spherical sponge-like carbon superstructure(NCS)assembled by 2D nanosheets is rationally and efficiently designed for K+storage.The optimized NCS electrode exhibits an outstanding rate capability,high reversible specific capacity(250 mAh g^(−1) at 200 mA g^(−1) after 300 cycles),and promising cycling performance(205 mAh g^(−1) at 1000 mA g^(−1) after 2000 cycles).The superior performance can be attributed to the unique robust spherical structure and 3D electrical transfer network together with nitrogen-rich nanosheets.Moreover,the regulation of the nitrogen doping types and morphology of NCS-5 is also discussed in detail based on the experiments results and density functional theory calculations.This strategy for manipulating the structure and properties of 3D materials is expected to meet the grand challenges for advanced carbon materials as high-performance PIB anodes in practical applications. 展开更多
关键词 POLYIMIdE NITROGEN-dOPEd Potassium-ion battery 3d carbon material
下载PDF
Fiber Traction Printing:A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite 被引量:6
17
作者 Xin Wang Xiaoyong Tian +1 位作者 Qin Lian Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期69-79,共11页
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t... A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys. 展开更多
关键词 3d printing Metal matrix composite CAPILLARITY Continuous carbon fiber
下载PDF
CNT@MnO_(2) composite ink toward a flexible 3D printed micro-zinc-ion battery 被引量:13
18
作者 Yujin Ren Fanbo Meng +4 位作者 Siwen Zhang Bu Ping Hui Li Bosi Yin Tianyi Ma 《Carbon Energy》 SCIE CAS 2022年第3期446-457,共12页
Flexible energy storage devices have played a significant role in multiscenario applications,while flexible zinc-ion batteries(ZIBs),as an essential branch,have developed rapidly in recent years.Three-dimensional(3D)p... Flexible energy storage devices have played a significant role in multiscenario applications,while flexible zinc-ion batteries(ZIBs),as an essential branch,have developed rapidly in recent years.Three-dimensional(3D)printing is an extremely advanced technology to design and modify the structure of batteries and provides unlimited possibilities for the diversified development of energy storage equipment.Herein,by utilizing 3D printing technology,carbon nanotube(CNT)is coated by MnO_(2) to form a flexible CNT@MnO_(2) ink as a cathode for flexible aqueous micro-ZIBs for the first time and zinc powder ink is used as an anode due to its high flexibility and bendability.The Zn//CNT@MnO_(2) flexible battery shows a stable capacity of 63μAh cm^(−2) at 0.4mA cm^(−2).When the battery is bent in different states,the maximum capacity loss compared with the initial value is only 2.72%,indicating its stability.This study shows the potential of 3D printing technology in the development of flexible manganese-based ZIBs. 展开更多
关键词 3d printing carbon nanotubes flexible zinc-ion battery MnO_(2)
下载PDF
A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes 被引量:13
19
作者 Yage Wu Yunlong Yang +4 位作者 Xiaoning Zhao Yongtao Tan Ying Liu Zhen Wang Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期81-91,共11页
Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation ... Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation stability, and complicated syntheses. In this study, a novel and simple multiphase polymeric strategy was developed to fabricate hybrid vanadium nitride/carbon(VN/C) membranes for supercapacitor negative electrodes, in which VN nanoparticles were uniformly distributed in the hierarchical porous carbon 3D networks. The supercapacitor negative electrode based on VN/C membranes exhibited a high specific capacitance of 392.0 F g^(-1) at 0.5 A g^(-1) and an excellent rate capability with capacitance retention of 50.5% at 30 A g^(-1). For the asymmetric device fabricated using Ni(OH)_2//VN/C membranes, a high energy density of 43.0 Wh kg^(-1) at a power density of800 W kg^(-1) was observed. Moreover, the device also showed good cycling stability of 82.9% at a current density of 1.0 A g^(-1) after 8000 cycles. This work may throw a light on simply the fabrication of other high-performance transition-metal nitridebased supercapacitor or other energy storage devices. 展开更多
关键词 SUPERCAPACITORS Vanadium nitride/carbon 3d network Hierarchical porous structure
下载PDF
A novel design of 3D carbon host for stable lithium metal anode 被引量:8
20
作者 Hang Liu Jie Di +8 位作者 Ping Wang Rui Gao Han Tian Pengfei Ren Qingxi Yuan Wanxia Huang Ruiping Liu Qiang Liu Ming Feng 《Carbon Energy》 SCIE CAS 2022年第4期654-664,共11页
Rational design of porous conductive hosts with high electrical conductivity,large surface area,and adequate interior space is desirable to suppressing dendritic lithium growth and accommodating large volume change of... Rational design of porous conductive hosts with high electrical conductivity,large surface area,and adequate interior space is desirable to suppressing dendritic lithium growth and accommodating large volume change of lithium metal anode during the Li plating/stripping process.However,due to the conductive nature of the conductive hosts,Li is easily deposited directly on the top of the hosts,which hinders it from fully functioning.To circumvent the issue,in this study,we designed a novel porous carbon host with a gradient-pore-size structure based on one-dimensional(1D)carbon with different diameters.With this kind of host,stable cycling with high and stable Coulombic efficiency of~98%is achieved at 0.5 mA cm^(−2) with an areal capacity of 1 mAh cm^(−2) over 320 cycles.In contrast,the normal three-dimensional(3D)carbon nanotube host presents a moss-like Li morphology with wildly fluctuating Coulombic efficiency after 100 cycles.The results reveal that the unique gradient-pore-size structure of the 3D conductive host greatly improves the performance of lithium metal batteries. 展开更多
关键词 3d conductive hosts anodes carbon Li dendrites lithium metal batteries
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部