期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Using 3D TCAD Simulation to Study Charge Collection of a p-n Junction in a 0.18μm Bulk Process
1
作者 梁斌 陈书明 刘必慰 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第9期1692-1697,共6页
Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results ... Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases. 展开更多
关键词 charge collection p-n junction very deep sub-micro 3d device simulation RAdIATION
下载PDF
An explicit method for numerical simulation of wave equations: 3D wave motion 被引量:1
2
作者 Liu Heng Liao Zhenpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第1期13-20,共8页
In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform ... In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing. 展开更多
关键词 3d wave equation numerical simulation explicit recursion formula finite element method
下载PDF
Nonlinear Switching Transient Field Simulation of Cable Joint without Residual Charge
3
作者 Mingyan Wu Jun Xiong +9 位作者 Lei Liao Lu Zhu Ruxin Zhang Zheng Wu Gang Du Xueyou Huang Haiming Li Jian Zhang Sizhuo Liao Binxian Lu 《Energy and Power Engineering》 2020年第4期46-52,共7页
The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic fi... The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least. 展开更多
关键词 Cable Joint SWITCHING TRANSIENT Field 3d TRANSIENT ELECTROMAGNETIC simulation Model FINITE ELEMENT method
下载PDF
A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone
4
作者 Huiqing Liu Heping Xie +2 位作者 Fei Wu Cunbao Li Renbo Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期479-489,共11页
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi... Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks. 展开更多
关键词 3d fractal analysis Fractal dimension Rock pore structure Box-counting method Permeability simulation Computational geosciences
下载PDF
3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel 被引量:4
5
作者 钟登华 佟大威 《Transactions of Tianjin University》 EI CAS 2009年第2期101-107,共7页
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav... Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability. 展开更多
关键词 water conveyance tunnel tunnel boring machine CONSTRUCTION 3d finite element method numerical analysis simulation
下载PDF
Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining 被引量:12
6
作者 WU Zheng-yan JIANG Shu-guang HE Xin-jian WANG Lan-yun LIN Bai-quan 《Journal of China University of Mining and Technology》 EI 2007年第2期152-157,共6页
In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through poro... In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible. 展开更多
关键词 3d numerical simulation of gas transfer in the goaf air pressure distribution in the goaf weighted upstream multi-element balance numerical simulation method
下载PDF
Numerical Simulation of 2D and 3D Sloshing Waves in a Regularly and Randomly Excited Container 被引量:2
7
作者 Eswaran M Akashdeep S. Virk Ujjwal K. Saha 《Journal of Marine Science and Application》 2013年第3期298-314,共17页
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numer... In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion. 展开更多
关键词 3d container free surface σ-transformation sloshing wave finite difference method Numerical simulation
下载PDF
Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model 被引量:8
8
作者 CUIShu-biao ZHOUHua-min LIDe-qun 《Computer Aided Drafting,Design and Manufacturing》 2004年第2期64-70,共7页
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ... The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed. 展开更多
关键词 injection molding cooling system numerical simulation 3d surface model Boundary Element method
下载PDF
Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors
9
作者 雷咏梅 蒋英 冯捷 《Journal of Shanghai University(English Edition)》 CAS 2002年第4期319-324,共6页
This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000 a cluster of symmetric multiprocessors (SMPs). The combined load for cel... This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000 a cluster of symmetric multiprocessors (SMPs). The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition. Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied. Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly. It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains. 展开更多
关键词 parallel computing Monte Carlo method 3d simulation.
下载PDF
3D simulation of image-defined complex internal features using the numerical manifold method
10
作者 WU Jie MA GuoWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1023-1039,共17页
The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the ind... The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the induced continuous-discontinuous(C-D)deformation fields are challenges to their numerical simulation.In this study,a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time.With the help of a developed voxel crack model,image models that are efficient when recording complex geometries are directly imported into the simulation.Surface reconstructions,which are usually labor-intensive,are excluded from this approach.Moreover,using image models as the geometric input,image processing techniques are applied to detect material interfaces and develop contact pairs.Then,the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method.The accuracy and convergence of the developed3D approach are examined based on multiple benchmarks.Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach. 展开更多
关键词 3d continuous-discontinuous simulation image-based simulation complex internal features numerical manifold method voxel crack model structured mesh
原文传递
Optimization of the Method of Fundamental Solution for Computation of Charges and Forces on a Spherical Particle between Two Parallel Plates
11
作者 Mohamed M. Abouelsaad Reda EI-Sayed Morsi Abdelhadi R. Salama 《材料科学与工程(中英文B版)》 2011年第6期718-724,共7页
关键词 优化计算 球形粒子 平行板 收费 基本解 模拟电荷法 几何形状 解析表达式
下载PDF
Fully Nonlinear Simulation for Fluid/Structure Impact:A Review 被引量:2
12
作者 Shili Sun Guoxiong Wu 《Journal of Marine Science and Application》 2014年第3期237-244,共8页
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method... This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact. 展开更多
关键词 fluid/structure impact boundary element method 3d surface mesh generation water entry wave impact similarity solution fully nonlinear simulation
下载PDF
基于3D模拟电荷法的变电站工频电场计算 被引量:14
13
作者 杜志叶 干喆渊 +3 位作者 阮江军 阮祥勇 文武 杜卫 《高电压技术》 EI CAS CSCD 北大核心 2011年第10期2587-2593,共7页
高压变电站内工频电场的计算与评测日益重要。为此,采用3D模拟电荷法(charge simulation method,CSM)对某变电站户外区域离地1.5m高度处工频电场进行了计算和分析。模拟电荷采用置于导体轴线上的线电荷模拟,电荷密度在线单元上呈线性分... 高压变电站内工频电场的计算与评测日益重要。为此,采用3D模拟电荷法(charge simulation method,CSM)对某变电站户外区域离地1.5m高度处工频电场进行了计算和分析。模拟电荷采用置于导体轴线上的线电荷模拟,电荷密度在线单元上呈线性分布。采用ANSYS前、后处理模块实现实体建模和计算云图的3D渲染;通过对一条1000kV特高压输电线路走廊内工频电场的计算,验证了3DCSM方法的正确性。对一个实际的110kV变电站的工频电场进行建模仿真,电场强度的数值分布规律同理论分析基本符合;在工作走廊上计算值同实测结果变化趋势一致,在电气设备不太密集的区域,计算值与实测值之间误差<10%。该方法可以用来求解大模型开域场问题。 展开更多
关键词 3d模拟电荷法(csm) 前处理 变电站 工作走廊 工频电场 线电荷单元
下载PDF
Contrast between 2D inversion and 3D inversion based on 2D high-density resistivity data 被引量:2
14
作者 冯德山 戴前伟 肖波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期224-232,共9页
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ... The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties. 展开更多
关键词 high-density resistivity method finite element method forward simulation least square inversion 2d inversion 3d inversion apparent resistivity
下载PDF
Analysis of Three-dimensional Crack Propagation by Using Displacement Discontinuity Method 被引量:3
15
作者 王飞 黄醒春 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期835-840,共6页
A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ... A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective. 展开更多
关键词 three-dimensional(3d)crack propagation displacement discontinuity method stress intensity factor(SIF) numerical simulation
下载PDF
Prediction of Weld Joint Shape and Dimensions in Laser Welding Using a 3D Modeling and Experimental Validation 被引量:1
16
作者 Laurent Jacques Abderrazak El Ouafi 《Materials Sciences and Applications》 2017年第11期757-773,共17页
This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallur... This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions. 展开更多
关键词 Laser Welding Finite Element method 3d MOdELING Numerical simulation WELd SHAPE WELd dIMENSIONS PREdICTIVE MOdELING
下载PDF
Efficient solution of large-scale matrix of acoustic wave equations in 3D frequency domain
17
作者 Changcheng Li Xiaofei Chen 《Applied Geophysics》 SCIE CSCD 2021年第3期299-316,431,432,共20页
In 3D frequency domain seismic forward and inversion calculation,the huge amount of calculation and storage is one of the main factors that restrict the processing speed and calculation efficiency.The frequency domain... In 3D frequency domain seismic forward and inversion calculation,the huge amount of calculation and storage is one of the main factors that restrict the processing speed and calculation efficiency.The frequency domain finite-difference forward simulation algorithm based on the acoustic wave equation establishes a large bandwidth complex matrix according to the discretized acoustic wave equation,and then the frequency domain wave field value is obtained by solving the matrix equation.In this study,the predecessor's optimized five-point method is extended to a 3D seven-point finite-difference scheme,and then a perfectly matched layer absorbing boundary condition(PML)is added to establish the corresponding matrix equation.In order to solve the complex matrix,we transform it to the equivalent real number domain to expand the solvable range of the matrix,and establish two objective functions to transform the matrix solving problem into an optimization problem that can be solved using gradient methods,and then use conjugate gradient algorithm to solve the problem.Previous studies have shown that in the conjugate gradient algorithm,the product of the matrix and the vector is the main factor that affects the calculation efficiency.Therefore,this study proposes a method that transform bandwidth matrix and vector product problem into some equivalent vector and vector product algorithm,thereby reducing the amount of calculation and storage. 展开更多
关键词 Frequency domain acoustic wave simulation large bandwidth matrix conjugate gradient method 3d seven-point finite difference
下载PDF
The establishment of 3D visualization modeling for the jointed slope
18
作者 LI Yu XU Jia HAN Chuan 《Journal of Civil Engineering and Architecture》 2009年第3期23-30,共8页
The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of ... The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects. 展开更多
关键词 slop with structural plane 3d visualization model moving least squares method computer simulation
下载PDF
模拟电荷法计算特高压架空线路3维工频电场 被引量:92
19
作者 彭迎 阮江军 《高电压技术》 EI CAS CSCD 北大核心 2006年第12期69-73,77,共6页
为研究杆塔及导线弧垂对架空线路周围工频电场分布的影响,并检验2维计算模型的合理性与适用性,首先基于模拟电荷法建立考虑杆塔及导线弧垂的3维架空线路工频电场计算模型(它以线电荷单元为模拟电荷布置在各导线和杆塔铁棒轴线上,解析计... 为研究杆塔及导线弧垂对架空线路周围工频电场分布的影响,并检验2维计算模型的合理性与适用性,首先基于模拟电荷法建立考虑杆塔及导线弧垂的3维架空线路工频电场计算模型(它以线电荷单元为模拟电荷布置在各导线和杆塔铁棒轴线上,解析计算线电荷单元的电位系数,并叠加得到总体电位系数矩阵,从而可解得各节点的线电荷),然后据此计算了特高压线路相导线表面及地面上1m高平面内的3维工频电场。结果表明,地面上1m处平面内场强分布受弧垂影响很大,3维模型比2维模型更全面、准确地反映了这种不均匀分布状况;各相导线表面场强最大值在杆塔附近均有微弱变化,但并不显著;地面上1m处场强在杆塔附近增大,但在远离杆塔的区域基本不受杆塔影响。 展开更多
关键词 模拟电荷法(csm) 线电荷单元 特高压架空线 3维工频电场计算 悬链线
下载PDF
ADAMS中三维虚拟路面的实现 被引量:19
20
作者 程超 王登峰 李承德 《汽车工程》 EI CSCD 北大核心 2006年第2期163-166,共4页
提出一种在车辆虚拟样机动力学性能仿真分析中构建三维虚拟路面的方法,将路面节点连接问题简化为投影平面内点集的不规则三角形网格连接,依据delaunay算法进行求解。由于对节点的分布无过多的限制,从而大大简化了虚拟样机动力学分析中... 提出一种在车辆虚拟样机动力学性能仿真分析中构建三维虚拟路面的方法,将路面节点连接问题简化为投影平面内点集的不规则三角形网格连接,依据delaunay算法进行求解。由于对节点的分布无过多的限制,从而大大简化了虚拟样机动力学分析中路面的构建过程,可用于复杂试验路面的数字实现。 展开更多
关键词 三维虚拟路面 dELAUNAY算法 AdAMS仿真
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部