A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passiva...A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries.展开更多
This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of...This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.展开更多
基金Natural Science Foundation for Young Scientists of Henan Province,Grant/Award Number:202300410071Key Research Project of Henan Provincial Higher Education,Grant/Award Number:21A140007National Natural Science Foundation of China,Grant/Award Numbers:62174049,52003073,52102285。
文摘A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries.
基金2011 China Aerospace Science and Technology Corporation Aerospace Science and Technology Innovation Foundation Subsidized Project2011 CASC and HIT Joint Technology Innovation Foundation
文摘This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.