期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
1
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 deep Learning convolutional neural Networks (CNN) Seismic Fault Identification U-Net 3d Model Geological Exploration
下载PDF
Reconstructing the 3D digital core with a fully convolutional neural network
2
作者 Li Qiong Chen Zheng +4 位作者 He Jian-Jun Hao Si-Yu Wang Rui Yang Hao-Tao Sun Hua-Jun 《Applied Geophysics》 SCIE CSCD 2020年第3期401-410,共10页
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for... In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks. 展开更多
关键词 Fully convolutional neural network 3d digital core numerical simulation training set
下载PDF
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
3
作者 Lingyun BAO Zhengrui HUANG +7 位作者 Zehui LIN Yue SUN Hui CHEN You LI Zhang LI Xiaochen YUAN Lin XU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期239-251,共13页
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing... Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model. 展开更多
关键词 Breast ultrasound Automated 3d breast ultrasound Breast cancers deep learning Transfer learning convolutional neural networks Computer-aided diagnosis Cross organ learning
下载PDF
Image-Based Flow Prediction of Vocal Folds Using 3D Convolutional Neural Networks
4
作者 Yang Zhang Tianmei Pu +1 位作者 Jiasen Xu Chunhua Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期991-1002,共12页
In this work,a three dimensional(3D)convolutional neural network(CNN)model based on image slices of various normal and pathological vocal folds is proposed for accurate and efficient prediction of glottal flows.The 3D... In this work,a three dimensional(3D)convolutional neural network(CNN)model based on image slices of various normal and pathological vocal folds is proposed for accurate and efficient prediction of glottal flows.The 3D CNN model is composed of the feature extraction block and regression block.The feature extraction block is capable of learning low dimensional features from the high dimensional image data of the glottal shape,and the regression block is employed to flatten the output from the feature extraction block and obtain the desired glottal flow data.The input image data is the condensed set of 2D image slices captured in the axial plane of the 3D vocal folds,where these glottal shapes are synthesized based on the equations of normal vibration modes.The output flow data is the corresponding flow rate,averaged glottal pressure and nodal pressure distributions over the glottal surface.The 3D CNN model is built to establish the mapping between the input image data and output flow data.The ground-truth flow variables of each glottal shape in the training and test datasets are obtained by a high-fidelity sharp-interface immersed-boundary solver.The proposed model is trained to predict the concerned flow variables for glottal shapes in the test set.The present 3D CNN model is more efficient than traditional Computational Fluid Dynamics(CFD)models while the accuracy can still be retained,and more powerful than previous data-driven prediction models because more details of the glottal flow can be provided.The prediction performance of the trained 3D CNN model in accuracy and efficiency indicates that this model could be promising for future clinical applications. 展开更多
关键词 Vocal folds Computational fluid dynamics Machine learning 3d convolutional neural network
原文传递
Short‐term and long‐term memory self‐attention network for segmentation of tumours in 3D medical images
5
作者 Mingwei Wen Quan Zhou +3 位作者 Bo Tao Pavel Shcherbakov Yang Xu Xuming Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1524-1537,共14页
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap... Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS. 展开更多
关键词 3d medical images convolutional neural network self‐attention network TRANSFORMER tumor segmentation
下载PDF
Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network
6
作者 Bolin Guo Shi Qiu +1 位作者 Pengchang Zhang Xingjia Tang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1809-1833,共25页
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b... Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection. 展开更多
关键词 MURALS anomaly detection HYPERSPECTRAL 3d CNN(convolutional neural Networks) residual network
下载PDF
Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs 被引量:2
7
作者 Jing-Jing Liu Jian-Chao Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期350-363,共14页
The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience ... The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience of geologists.This approach has strong subjectivity,low efficiency,and high uncertainty.This uncertainty may be one of the key factors affecting the results of 3 D modeling of tight sandstone reservoirs.In recent years,deep learning,which is a cutting-edge artificial intelligence technology,has attracted attention from various fields.However,the study of deep-learning techniques in the field of lithofacies classification has not been sufficient.Therefore,this paper proposes a novel hybrid deep-learning model based on the efficient data feature-extraction ability of convolutional neural networks(CNN)and the excellent ability to describe time-dependent features of long short-term memory networks(LSTM)to conduct lithological facies-classification experiments.The results of a series of experiments show that the hybrid CNN-LSTM model had an average accuracy of 87.3%and the best classification effect compared to the CNN,LSTM or the three commonly used machine learning models(Support vector machine,random forest,and gradient boosting decision tree).In addition,the borderline synthetic minority oversampling technique(BSMOTE)is introduced to address the class-imbalance issue of raw data.The results show that processed data balance can significantly improve the accuracy of lithofacies classification.Beside that,based on the fine lithofacies constraints,the sequential indicator simulation method is used to establish a three-dimensional lithofacies model,which completes the fine description of the spatial distribution of tight sandstone reservoirs in the study area.According to this comprehensive analysis,the proposed CNN-LSTM model,which eliminates class imbalance,can be effectively applied to lithofacies classification,and is expected to improve the reality of the geological model for the tight sandstone reservoirs. 展开更多
关键词 deep learning convolutional neural networks LSTM Lithological-facies classification 3d modeling Class imbalance
下载PDF
CurveNet:Curvature-Based Multitask Learning Deep Networks for 3D Object Recognition 被引量:2
8
作者 A.A.M.Muzahid Wanggen Wan +2 位作者 Ferdous Sohel Lianyao Wu Li Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1177-1187,共11页
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ... In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task. 展开更多
关键词 3d shape analysis convolutional neural network dNNs object classification volumetric CNN
下载PDF
Panicle-3D: A low-cost 3D-modeling method for rice panicles based on deep learning, shape from silhouette, and supervoxel clustering 被引量:1
9
作者 Dan Wu Lejun Yu +10 位作者 Junli Ye Ruifang Zhai Lingfeng Duan Lingbo Liu Nai Wu Zedong Geng Jingbo Fu Chenglong Huang Shangbin Chen Qian Liu Wanneng Yang 《The Crop Journal》 SCIE CSCD 2022年第5期1386-1398,共13页
Self-occlusions are common in rice canopy images and strongly influence the calculation accuracies of panicle traits. Such interference can be largely eliminated if panicles are phenotyped at the 3 D level.Research on... Self-occlusions are common in rice canopy images and strongly influence the calculation accuracies of panicle traits. Such interference can be largely eliminated if panicles are phenotyped at the 3 D level.Research on 3 D panicle phenotyping has been limited. Given that existing 3 D modeling techniques do not focus on specified parts of a target object, an efficient method for panicle modeling of large numbers of rice plants is lacking. This paper presents an automatic and nondestructive method for 3 D panicle modeling. The proposed method integrates shoot rice reconstruction with shape from silhouette, 2 D panicle segmentation with a deep convolutional neural network, and 3 D panicle segmentation with ray tracing and supervoxel clustering. A multiview imaging system was built to acquire image sequences of rice canopies with an efficiency of approximately 4 min per rice plant. The execution time of panicle modeling per rice plant using 90 images was approximately 26 min. The outputs of the algorithm for a single rice plant are a shoot rice model, surface shoot rice model, panicle model, and surface panicle model, all represented by a list of spatial coordinates. The efficiency and performance were evaluated and compared with the classical structure-from-motion algorithm. The results demonstrated that the proposed method is well qualified to recover the 3 D shapes of rice panicles from multiview images and is readily adaptable to rice plants of diverse accessions and growth stages. The proposed algorithm is superior to the structure-from-motion method in terms of texture preservation and computational efficiency. The sample images and implementation of the algorithm are available online. This automatic, cost-efficient, and nondestructive method of 3 D panicle modeling may be applied to high-throughput 3 D phenotyping of large rice populations. 展开更多
关键词 Panicle phenotyping deep convolutional neural network 3d reconstruction Shape from silhouette Point-cloud segmentation Ray tracing Supervoxel clustering
下载PDF
Behavior recognition algorithm based on the improved R3D and LSTM network fusion 被引量:1
10
作者 Wu Jin An Yiyuan +1 位作者 Dai Wei Zhao Bo 《High Technology Letters》 EI CAS 2021年第4期381-387,共7页
Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the... Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset. 展开更多
关键词 behavior recognition three-dimensional residual convolutional neural network(R3d) long short-term memory(LSTM) dROPOUT batch normalization(BN)
下载PDF
Recognition of mortar pumpability via computer vision and deep learning
11
作者 Hao-Zhe Feng Hong-Yang Yu +2 位作者 Wen-Yong Wang Wen-Xuan Wang Ming-Qian Du 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第3期73-81,共9页
The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional con... The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification. 展开更多
关键词 Classification Computer vision deep learning PUMPABILITY 2-dimensional convolutional long short-term memory network (ConvLSTM2d) 3-dimensional convolutional neural network(3d CNN)
下载PDF
Web3D Learning Framework for 3D Shape Retrieval Based on Hybrid Convolutional Neural Networks 被引量:1
12
作者 Wen Zhou Jinyuan Jia +1 位作者 Chengxi Huang Yongqing Cheng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第1期93-102,共10页
With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of... With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches. 展开更多
关键词 WEB3d sketch-based model RETRIEVAL convolutional neural Networks(CNNs) best VIEW cross-domain
原文传递
An Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network 被引量:1
13
作者 Hongchao Fan Gefei Kong Chaoquan Zhang 《Big Earth Data》 EI 2021年第1期49-65,共17页
The applications of 3D building models are limited as producing them requires massive labor and time costs as well as expensive devices.In this paper,we aim to propose a novel and web-based interactive platform,VGI3D,... The applications of 3D building models are limited as producing them requires massive labor and time costs as well as expensive devices.In this paper,we aim to propose a novel and web-based interactive platform,VGI3D,to overcome these challenges.The platform is designed to reconstruct 3D building models by using free images from internet users or volunteered geographic informa-tion(VGI)platform,even though not all these images are of high quality.Our interactive platform can effectively obtain each 3D building model from images in 30 seconds,with the help of user interaction module and convolutional neural network(CNN).The user interaction module provides the boundary of building facades for 3D building modeling.And this CNN can detect facade elements even though multiple architectural styles and complex scenes are within the images.Moreover,user interaction module is designed as simple as possible to make it easier to use for both of expert and non-expert users.Meanwhile,we conducted a usability testing and collected feedback from participants to better optimize platform and user experience.In general,the usage of VGI data reduces labor and device costs,and CNN simplifies the process of elements extraction in 3D building modeling.Hence,our proposed platform offers a promising solution to the 3D modeling community. 展开更多
关键词 3d building modeling VGI convolutional neural network user interaction low cost
原文传递
3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising
14
作者 Bei-Ji Zou Yun-Di Guo +3 位作者 Qi He Ping-Bo Ouyang Ke Liu Zai-Liang Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期838-848,共11页
Block matching based 3D filtering methods have achieved great success in image denoising tasks. However the manually set filtering operation could not well describe a good model to transform noisy images to clean imag... Block matching based 3D filtering methods have achieved great success in image denoising tasks. However the manually set filtering operation could not well describe a good model to transform noisy images to clean images. In this paper, we introduce convolutional neural network (CNN) for the 3D filtering step to learn a well fitted model for denoising. With a trainable model, prior knowledge is utilized for better mapping from noisy images to clean images. This block matching and CNN joint model (BMCNN) could denoise images with different sizes and different noise intensity well, especially images with high noise levels. The experimental results demonstrate that among all competing methods, this method achieves the highest peak signal to noise ratio (PSNR) when denoising images with high noise levels (σ 〉 40), and the best visual quality when denoising images with all the tested noise levels. 展开更多
关键词 block matching convolutional neural network (CNN) dENOISING 3d filtering
原文传递
CoolVox:Advanced 3D convolutional neural network models for predicting solar radiation on building facades
15
作者 Jung Min Han Eun Seuk Choi Ali Malkawi 《Building Simulation》 SCIE EI CSCD 2022年第5期755-768,共14页
Data-driven models have become increasingly prominent in the building,architecture,and construction industries.One area ideally suited to exploit this powerful new technology is building performance simulation.Physics... Data-driven models have become increasingly prominent in the building,architecture,and construction industries.One area ideally suited to exploit this powerful new technology is building performance simulation.Physics-based models have traditionally been used to estimate the energy flow,air movement,and heat balance of buildings.However,physics-based models require many assumptions,significant computational power,and a considerable amount of time to output predictions.Artificial neural networks(ANNs)with prefabricated or simulated data are likely to be a more feasible option for environmental analysis conducted by designers during the early design phase.Because ANNs require fewer inputs and shorter computation times and offer superior performance and potential for data augmentation,they have received increased attention for predicting the surface solar radiation on buildings.Furthermore,ANNs can provide innovative and quick design solutions,enabling designers to receive instantaneous feedback on the effects of a proposed change to a building's design.This research introduces deep learning methods as a means of simulating the annual radiation intensities and exposure level of buildings without the need for physics-based engines.We propose the CoolVox model to demonstrate the feasibility of using 3D convolutional neural networks to predict the surface radiation on building facades.The CoolVox model accurately predicted the radiation intensities of building facades under different boundary conditions and performed better than ARINet(with average mean square errors of 0.01 and 0.036,respectively)in predicting the radiation intensity both with(validation error=0.0165)and without(validation error=0.0066)the presence of boundary buildings. 展开更多
关键词 artificial neural networks 3d convolutional neural networks solar radiation simulation building performance simulation
原文传递
BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络 被引量:3
16
作者 张学典 方慧 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2342-2347,共6页
点云卷积网络对点云进行分割分类时,独立提取点云特征却忽略了点之间的几何关联,从而丢失了许多局部特征.而对稀疏、无结构、无序的点云进行输入转换则会导致数据变得更加庞大,卷积效率降低.为此构建了面向三维点云拓扑结构的BallTree... 点云卷积网络对点云进行分割分类时,独立提取点云特征却忽略了点之间的几何关联,从而丢失了许多局部特征.而对稀疏、无结构、无序的点云进行输入转换则会导致数据变得更加庞大,卷积效率降低.为此构建了面向三维点云拓扑结构的BallTree动态图卷积神经网络,利用Bat-Net变换网络(BallTree transfromation network)对初始无序点云进行空间变换,恢复点云的拓扑结构和距离向量,提高点云中各个点间的关联性,结合三层BAT边卷积模块(BallTree edge convolution network),提升其信息表征能力,以便更好地进行分类分割任务.实验结果表明,该方法在ModelNet40数据集上的分类性能均优于其他五种方法,分别提高了4.4%、2.9%、1.3%、2%和1.4%.同时在ShapeNet Parts数据集上的分割的平均交并比分别提高了1.7%、0.3%、0.3%、0.3%、0.3%,有效地提升了三维点云的分类分割性能. 展开更多
关键词 三维点云 图卷积神经网络 分类 分割
下载PDF
基于块编码特点的压缩视频质量增强算法
17
作者 于海 杨磊 +4 位作者 高阳 刘枫琪 刘鹏宇 孙萱 张悦 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1069-1076,共8页
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强... 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding, HEVC)标准H.265,所提算法在低延迟(low delay, LD)配置下且量化参数(quantization parameter, QP)为37时,峰值信噪比(peak signal-to-noise ratio, PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference, DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network, MGANet)方法,该算法PSNR的增长量提升了15.1%。 展开更多
关键词 视频编码 高效视频编码(high efficiency video coding HEVC) 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network CNN) 三维卷积神经网络(3d convolutional neural network 3d-CNN)
下载PDF
3维卷积递归神经网络的高光谱图像分类方法 被引量:9
18
作者 关世豪 杨桄 +1 位作者 李豪 付严宇 《激光技术》 CAS CSCD 北大核心 2020年第4期485-491,共7页
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信... 为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。 展开更多
关键词 光谱学 高光谱图像分类 3维卷积神经网络 双向循环神经网络 空谱联合特征
下载PDF
Virtual-reality-based digital twin of office spaces with social distance measurement feature 被引量:4
19
作者 Abhishek MUKHOPADHYAY G S Rajshekar REDDY +4 位作者 KamalPreet Singh SALUJA Subhankar GHOSH Anasol PEÑA-RIOS Gokul GOPAL Pradipta BISWAS 《Virtual Reality & Intelligent Hardware》 EI 2022年第1期55-75,共21页
Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2 virus.Many students and researchers have already attempted to use computer vision technology to automatically detect human beings... Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2 virus.Many students and researchers have already attempted to use computer vision technology to automatically detect human beings in the field of view of a camera and help enforce social distancing.However,because of the present lockdown measures in several countries,the validation of computer vision systems using large-scale datasets is a challenge.Methods In this paper,a new method is proposed for generating customized datasets and validating deep-learning-based computer vision models using virtual reality(VR)technology.Using VR,we modeled a digital twin(DT)of an existing office space and used it to create a dataset of individuals in different postures,dresses,and locations.To test the proposed solution,we implemented a convolutional neural network(CNN)model for detecting people in a limited-sized dataset of real humans and a simulated dataset of humanoid figures.Results We detected the number of persons in both the real and synthetic datasets with more than 90%accuracy,and the actual and measured distances were significantly correlated(r=0.99).Finally,we used intermittent-layer-and heatmap-based data visualization techniques to explain the failure modes of a CNN.Conclusions A new application of DTs is proposed to enhance workplace safety by measuring the social distance between individuals.The use of our proposed pipeline along with a DT of the shared space for visualizing both environmental and human behavior aspects preserves the privacy of individuals and improves the latency of such monitoring systems because only the extracted information is streamed. 展开更多
关键词 Virtual environment digital twin 3d visualization convolutional neural network Object detection Social distancing
下载PDF
MSF-Net: A Multilevel Spatiotemporal Feature Fusion Network Combines Attention for Action Recognition
20
作者 Mengmeng Yan Chuang Zhang +3 位作者 Jinqi Chu Haichao Zhang Tao Ge Suting Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1433-1449,共17页
An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction,information r... An action recognition network that combines multi-level spatiotemporal feature fusion with an attention mechanism is proposed as a solution to the issues of single spatiotemporal feature scale extraction,information redundancy,and insufficient extraction of frequency domain information in channels in 3D convolutional neural networks.Firstly,based on 3D CNN,this paper designs a new multilevel spatiotemporal feature fusion(MSF)structure,which is embedded in the network model,mainly through multilevel spatiotemporal feature separation,splicing and fusion,to achieve the fusion of spatial perceptual fields and short-medium-long time series information at different scales with reduced network parameters;In the second step,a multi-frequency channel and spatiotemporal attention module(FSAM)is introduced to assign different frequency features and spatiotemporal features in the channels are assigned corresponding weights to reduce the information redundancy of the feature maps.Finally,we embed the proposed method into the R3D model,which replaced the 2D convolutional filters in the 2D Resnet with 3D convolutional filters and conduct extensive experimental validation on the small and medium-sized dataset UCF101 and the largesized dataset Kinetics-400.The findings revealed that our model increased the recognition accuracy on both datasets.Results on the UCF101 dataset,in particular,demonstrate that our model outperforms R3D in terms of a maximum recognition accuracy improvement of 7.2%while using 34.2%fewer parameters.The MSF and FSAM are migrated to another traditional 3D action recognition model named C3D for application testing.The test results based on UCF101 show that the recognition accuracy is improved by 8.9%,proving the strong generalization ability and universality of the method in this paper. 展开更多
关键词 3d convolutional neural network action recognition MSF FSAM
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部