期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Face recognition using SIFT features under 3D meshes 被引量:1
1
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3d face recognition seale-invariant feature transform (SIFT) expression OCCLUSION large pose changes 3d meshes
下载PDF
3D face recognition:A comprehensive survey in 2022 被引量:1
2
作者 Yaping Jing Xuequan Lu Shang Gao 《Computational Visual Media》 SCIE EI CSCD 2023年第4期657-685,共29页
In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techni... In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic. 展开更多
关键词 3d face recognition 3d face databases deep learning local features global feature
原文传递
3D face recognition based on principal axes registration and fusing features
3
作者 Hongxia ZHANG Yanning ZHANG +2 位作者 Zhe GUO Zenggang LIN Chao ZHANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期347-352,共6页
A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach ad... A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database. 展开更多
关键词 3d face recognition principal axes registration(PAR) fusion feature weighted voting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部