With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
Fracture propagation under mixed-mode loading conditions prevails in many natural geological processes and deep engineering projects,while the corresponding numerical simulation is very challenging in rock mechanics,e...Fracture propagation under mixed-mode loading conditions prevails in many natural geological processes and deep engineering projects,while the corresponding numerical simulation is very challenging in rock mechanics,especially in 3D cases.In most previous studies,the complexity of 3D fracture geometry was over-simplified,and model III loading was often not considered.In this study,we propose to use an efficient stress-based Sch€ollmann criterion combined with Displacement Discontinuity Method(DDM)to model 3D fracture propagation under arbitrary I+II+III mixed-mode loading conditions.A novel curve-smoothing algorithm is developed to smoothen the fracture front during propagation,which significantly enhances the model's ability in dealing with complex 3D fracture geometry.In particular,we adopt two different solution schemes,namely staggered and monolithic,to simulate mode I fracture propagation in the case of hydraulic fracturing.The accuracy,efficiency and convergency of the two solution schemes are compared in detail.Our research findings suggest that the degree of coupling between fracture aperture and fluid pressure in hydraulic fracturing lies somewhere between one-way and two-way,which favors the staggered solution scheme.To further test our new model,we provide three additional numerical examples associated with 3D fracture propagation under various mixed-mode loading conditions.Our model shows excellent performance in efficiently locating the new fracture front and reliably capturing the complex 3D fracture geometry.This study provides a generic algorithm to model high-fidelity 3D fracture propagation without simplifying fracture geometry or loading conditions,making it widely applicable to fracture-propagation-related problems.展开更多
Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot an...Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot and ankle fractures展开更多
Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive mea...Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.展开更多
Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas re...Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas reserves.Randomly distributed minerals and heterogeneities in shales significantly affect mechanical properties and fracturing behaviors in oil and gas exploitation.Describing the actual microstructure and associated heterogeneities in shales constitutes a significant challenge.The RFPA3D(rock failure process analysis parallel computing program)-based modeling approach is a promising numerical technique due to its unique capability to simulate the fracturing behavior of rocks.To improve traditional numerical technology and study crack propagation in shale on the microscopic scale,a combination of high-precision internal structure detection technology with the RFPA^(3D) numerical simulation method was developed to construct a real mineral structure-based modeling method.First,an improved digital image processing technique was developed to incorporate actual shale microstructures(focused ion beam scanning electron microscopy was used to capture shale microstructure images that reflect the distri-butions of different minerals)into the numerical model.Second,the effect of mineral inhomogeneity was considered by integrating the mineral statistical model obtained from the mineral nanoindentation experiments into the numerical model.By simulating a shale numerical model in which pyrite particles are wrapped by organic matter,the effects of shale microstructure and applied stress state on microcrack behavior and mechanical properties were investigated and analyzed.In this study,the effect of pyrite particles on fracture propagation was systematically analyzed and summarized for the first time.The results indicate that the distribution of minerals and initial defects dominated the fracture evolution and the failure mode.Cracks are generally initiated and propagated along the boundaries of hard mineral particles such as pyrite or in soft minerals such as organic matter.Locations with collections of hard minerals are more likely to produce complex fractures.This study provides a valuable method for un-derstanding the microfracture behavior of shales.展开更多
We present a three-dimensional(3D)numerical model to investigate complex fracture behavior using cohesive elements.An efficient packing algorithm is employed to create the mesoscale model of heterogeneous capsulebased...We present a three-dimensional(3D)numerical model to investigate complex fracture behavior using cohesive elements.An efficient packing algorithm is employed to create the mesoscale model of heterogeneous capsulebased self-healing concrete.Spherical aggregates are used and directly generated from specified size distributions with different volume fractions.Spherical capsules are also used and created based on a particular diameter,and wall thickness.Bilinear traction-separation laws of cohesive elements along the boundaries of the mortar matrix,aggregates,capsules,and their interfaces are pre-inserted to simulate crack initiation and propagation.These pre-inserted cohesive elements are also applied into the initial meshes of solid elements to account for fracture in the mortar matrix.Different realizations are carried out and statistically analyzed.The proposed model provides an effective tool for predicting the complex fracture response of capsule-based self-healing concrete at the meso-scale.展开更多
The principles for lifecycle safety guarantee of engineering structures areproposed, and the conception is developed for developing the safety guarantee system by integratingthe monitoring system, analysis system and ...The principles for lifecycle safety guarantee of engineering structures areproposed, and the conception is developed for developing the safety guarantee system by integratingthe monitoring system, analysis system and maintenance system together on the basis of multi-sensor,distribution-measurement, data fusion and digital-signal-processor (DSP) technologies as well asthree-dimensional (3D) fatigue fracture unified theory. As all the systems should work in situs andin real-time, micromation and integration are important. Damage detectability is introduced toclarify the relationship of life prediction and healthy monitoring or faulty diagnosis. The researchwork to realize the lifecycle safety guarantee system is summarized and perspectives for futureefforts are outlined.展开更多
Hyper-gravity experiment enable the acceleration of the long-term transport of contaminants through fractured geological barriers.However,the hyper-gravity effect of the solute transport in fractures are not well unde...Hyper-gravity experiment enable the acceleration of the long-term transport of contaminants through fractured geological barriers.However,the hyper-gravity effect of the solute transport in fractures are not well understood.In this study,the sealed control apparatus and the 3D printed fracture models were used to carry out 1 g and N g hyper-gravity experiments.The results show that the breakthrough curves for the 1 g and N g experiments were almost the same.The differences in the flow velocity and the fitted hydrodynamic dispersion coefficient were 0.97–3.12%and 9.09–20.4%,indicating that the internal fractures of the 3D printed fracture models remained stable under hyper-gravity,and the differences in the flow and solute transport characteristics were acceptable.A method for evaluating the long-term barrier performance of low-permeability fractured rocks was proposed based on the hyper-gravity experiment.The solute transport processes in the 1 g prototype,1 g scaled model,and N g scaled model were simulated by the OpenGeoSys(OGS)software.The results show that the N g scaled model can reproduce the flow and solute transport processes in the 1 g prototype without considering the micro-scale heterogeneity if the Reynolds number(Re)critical Reynolds number(Recr)and the Peclet number(Pe)the critical Peclet number(Pecr).This insight is valuable for carrying out hyper-gravity experiments to evaluate the long-term barrier performance of low-permeability fractured porous rock.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金support from National Natural Science Foundation of China under grant No.41877217General Research Fund of the Research Grants Council (Hong Kong)under grant No.17200721Natural Science Foundation of Guangdong Province under grant No.2019A1515010999.
文摘Fracture propagation under mixed-mode loading conditions prevails in many natural geological processes and deep engineering projects,while the corresponding numerical simulation is very challenging in rock mechanics,especially in 3D cases.In most previous studies,the complexity of 3D fracture geometry was over-simplified,and model III loading was often not considered.In this study,we propose to use an efficient stress-based Sch€ollmann criterion combined with Displacement Discontinuity Method(DDM)to model 3D fracture propagation under arbitrary I+II+III mixed-mode loading conditions.A novel curve-smoothing algorithm is developed to smoothen the fracture front during propagation,which significantly enhances the model's ability in dealing with complex 3D fracture geometry.In particular,we adopt two different solution schemes,namely staggered and monolithic,to simulate mode I fracture propagation in the case of hydraulic fracturing.The accuracy,efficiency and convergency of the two solution schemes are compared in detail.Our research findings suggest that the degree of coupling between fracture aperture and fluid pressure in hydraulic fracturing lies somewhere between one-way and two-way,which favors the staggered solution scheme.To further test our new model,we provide three additional numerical examples associated with 3D fracture propagation under various mixed-mode loading conditions.Our model shows excellent performance in efficiently locating the new fracture front and reliably capturing the complex 3D fracture geometry.This study provides a generic algorithm to model high-fidelity 3D fracture propagation without simplifying fracture geometry or loading conditions,making it widely applicable to fracture-propagation-related problems.
文摘Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot and ankle fractures
基金support for this work provided by the Fundamental Research Funds for the Central Universities(China University of Mining & Technology) (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Safe Mining(No. SKLCRSM08X02)
文摘Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.
基金supported by the Central Program of Basic Science of the National Natural Science Foundation of China(No.72088101)"The theory and application of resource and environment management in the digital economy era"+1 种基金The National Natural Science Foundation of China(No.41941018)Scientific research and technological development program of RIPED,"major research of basic geologic and synergy research of engineering practice on Gulong shale oil"(No.2021ycq01).
文摘Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas reserves.Randomly distributed minerals and heterogeneities in shales significantly affect mechanical properties and fracturing behaviors in oil and gas exploitation.Describing the actual microstructure and associated heterogeneities in shales constitutes a significant challenge.The RFPA3D(rock failure process analysis parallel computing program)-based modeling approach is a promising numerical technique due to its unique capability to simulate the fracturing behavior of rocks.To improve traditional numerical technology and study crack propagation in shale on the microscopic scale,a combination of high-precision internal structure detection technology with the RFPA^(3D) numerical simulation method was developed to construct a real mineral structure-based modeling method.First,an improved digital image processing technique was developed to incorporate actual shale microstructures(focused ion beam scanning electron microscopy was used to capture shale microstructure images that reflect the distri-butions of different minerals)into the numerical model.Second,the effect of mineral inhomogeneity was considered by integrating the mineral statistical model obtained from the mineral nanoindentation experiments into the numerical model.By simulating a shale numerical model in which pyrite particles are wrapped by organic matter,the effects of shale microstructure and applied stress state on microcrack behavior and mechanical properties were investigated and analyzed.In this study,the effect of pyrite particles on fracture propagation was systematically analyzed and summarized for the first time.The results indicate that the distribution of minerals and initial defects dominated the fracture evolution and the failure mode.Cracks are generally initiated and propagated along the boundaries of hard mineral particles such as pyrite or in soft minerals such as organic matter.Locations with collections of hard minerals are more likely to produce complex fractures.This study provides a valuable method for un-derstanding the microfracture behavior of shales.
基金The authors thank the support of the RISTEK-DIKTI(Directorate General of Resources for Science,Technology and Higher Education.Ministry of Research,Technology and Higher Education of Indonesia)under funding agreement No:153.39/E4.4/2014the project ‘Carl-Zeiss Stiftung’ Durchbriiche—Exzellenz in der Forschung:‘Funktionalisierung 191 smarter Werkstoffe unter Mehrfeldanforderungen fur die Verkehrsinfrastruktur’.
文摘We present a three-dimensional(3D)numerical model to investigate complex fracture behavior using cohesive elements.An efficient packing algorithm is employed to create the mesoscale model of heterogeneous capsulebased self-healing concrete.Spherical aggregates are used and directly generated from specified size distributions with different volume fractions.Spherical capsules are also used and created based on a particular diameter,and wall thickness.Bilinear traction-separation laws of cohesive elements along the boundaries of the mortar matrix,aggregates,capsules,and their interfaces are pre-inserted to simulate crack initiation and propagation.These pre-inserted cohesive elements are also applied into the initial meshes of solid elements to account for fracture in the mortar matrix.Different realizations are carried out and statistically analyzed.The proposed model provides an effective tool for predicting the complex fracture response of capsule-based self-healing concrete at the meso-scale.
基金This project is supported by National Natural Science Foundation of China (No.50275073)Space Science Foundation of China (No.03B52011).
文摘The principles for lifecycle safety guarantee of engineering structures areproposed, and the conception is developed for developing the safety guarantee system by integratingthe monitoring system, analysis system and maintenance system together on the basis of multi-sensor,distribution-measurement, data fusion and digital-signal-processor (DSP) technologies as well asthree-dimensional (3D) fatigue fracture unified theory. As all the systems should work in situs andin real-time, micromation and integration are important. Damage detectability is introduced toclarify the relationship of life prediction and healthy monitoring or faulty diagnosis. The researchwork to realize the lifecycle safety guarantee system is summarized and perspectives for futureefforts are outlined.
基金supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(No.51988101)the National Key Research and Development Project China(No.2018YFC1802300)+1 种基金the National Natural Science Foundation of China(No.42007262)the National Natural Science Foundation of China(No.42277128).
文摘Hyper-gravity experiment enable the acceleration of the long-term transport of contaminants through fractured geological barriers.However,the hyper-gravity effect of the solute transport in fractures are not well understood.In this study,the sealed control apparatus and the 3D printed fracture models were used to carry out 1 g and N g hyper-gravity experiments.The results show that the breakthrough curves for the 1 g and N g experiments were almost the same.The differences in the flow velocity and the fitted hydrodynamic dispersion coefficient were 0.97–3.12%and 9.09–20.4%,indicating that the internal fractures of the 3D printed fracture models remained stable under hyper-gravity,and the differences in the flow and solute transport characteristics were acceptable.A method for evaluating the long-term barrier performance of low-permeability fractured rocks was proposed based on the hyper-gravity experiment.The solute transport processes in the 1 g prototype,1 g scaled model,and N g scaled model were simulated by the OpenGeoSys(OGS)software.The results show that the N g scaled model can reproduce the flow and solute transport processes in the 1 g prototype without considering the micro-scale heterogeneity if the Reynolds number(Re)critical Reynolds number(Recr)and the Peclet number(Pe)the critical Peclet number(Pecr).This insight is valuable for carrying out hyper-gravity experiments to evaluate the long-term barrier performance of low-permeability fractured porous rock.