期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries 被引量:5
1
作者 Ju Fu Wenbin Kang +4 位作者 Xiaodong Guo Hao Wen Tianbiao Zeng Ruoxin Yuan Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期172-179,I0006,共9页
With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wi... With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs. 展开更多
关键词 NiO/graphene composite paper electrode 3d hierarchical porous structure Micro-sized NiO flowers Long-life high rate cycling Lithium ion battery
下载PDF
A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells 被引量:3
2
作者 Jichuan Qiu Kun Zhao +7 位作者 Linlin Li Xin Yu Weibo Guo Shu Wang Xiaodi Zhang Caofeng Pan Zhong Lin Wang Hong Liu 《Nano Research》 SCIE EI CAS CSCD 2017年第3期776-784,共9页
Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cell... Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample. 展开更多
关键词 TiO2 nanorod array circulating tumor cell microfluidic device nano-bio interface 3d hierarchical structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部