Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge...As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection.展开更多
In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surem...In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.展开更多
Background In this study,we propose a novel 3D scene graph prediction approach for scene understanding from point clouds.Methods It can automatically organize the entities of a scene in a graph,where objects are nodes...Background In this study,we propose a novel 3D scene graph prediction approach for scene understanding from point clouds.Methods It can automatically organize the entities of a scene in a graph,where objects are nodes and their relationships are modeled as edges.More specifically,we employ the DGCNN to capture the features of objects and their relationships in the scene.A Graph Attention Network(GAT)is introduced to exploit latent features obtained from the initial estimation to further refine the object arrangement in the graph structure.A one loss function modified from cross entropy with a variable weight is proposed to solve the multi-category problem in the prediction of object and predicate.Results Experiments reveal that the proposed approach performs favorably against the state-of-the-art methods in terms of predicate classification and relationship prediction and achieves comparable performance on object classification prediction.Conclusions The 3D scene graph prediction approach can form an abstract description of the scene space from point clouds.展开更多
In order to understand the 3D landscape with many h igh buildings in a city, the 2D GIS has to be extended to 3D GIS. The further de velopment of CyberCity has to include various applications of 3D scenes from the out...In order to understand the 3D landscape with many h igh buildings in a city, the 2D GIS has to be extended to 3D GIS. The further de velopment of CyberCity has to include various applications of 3D scenes from the outdoor scenes to the indoor ones. In thispaper, some key techniques, such as data management method and dynamicalvisualization method for the outdoor and the indoor scenes, are discussed.The indoor scene is compared with the outdoor one. The idea of integratedrepresentation of the outdoor and the indoor scenes in CyberCity GIS is discusse d.展开更多
The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is be...The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
The emergence of 3D Gaussian splatting(3DGS)has greatly accelerated rendering in novel view synthesis.Unlike neural implicit representations like neural radiance fields(NeRFs)that represent a 3D scene with position an...The emergence of 3D Gaussian splatting(3DGS)has greatly accelerated rendering in novel view synthesis.Unlike neural implicit representations like neural radiance fields(NeRFs)that represent a 3D scene with position and viewpoint-conditioned neural networks,3D Gaussian splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images.Apart from fast rendering,the explicit representation of 3D Gaussian splatting also facilitates downstream tasks like dynamic reconstruction,geometry editing,and physical simulation.Considering the rapid changes and growing number of works in this field,we present a literature review of recent 3D Gaussian splatting methods,which can be roughly classified by functionality into 3D reconstruction,3D editing,and other downstream applications.Traditional point-based rendering methods and the rendering formulation of 3D Gaussian splatting are also covered to aid understanding of this technique.This survey aims to help beginners to quickly get started in this field and to provide experienced researchers with a comprehensive overview,aiming to stimulate future development of the 3D Gaussian splatting representation.展开更多
We introduce a novel end-to-end deeplearning solution for rapidly estimating a dense spherical depth map of an indoor environment.Our input is a single equirectangular image registered with a sparse depth map,as provi...We introduce a novel end-to-end deeplearning solution for rapidly estimating a dense spherical depth map of an indoor environment.Our input is a single equirectangular image registered with a sparse depth map,as provided by a variety of common capture setups.Depth is inferred by an efficient and lightweight single-branch network,which employs a dynamic gating system to process together dense visual data and sparse geometric data.We exploit the characteristics of typical man-made environments to efficiently compress multiresolution features and find short-and long-range relations among scene parts.Furthermore,we introduce a new augmentation strategy to make the model robust to different types of sparsity,including those generated by various structured light sensors and LiDAR setups.The experimental results demonstrate that our method provides interactive performance and outperforms stateof-the-art solutions in computational efficiency,adaptivity to variable depth sparsity patterns,and prediction accuracy for challenging indoor data,even when trained solely on synthetic data without any fine tuning.展开更多
We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of ...We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of many object-centric scenes. Inspired by SinGAN, we also learn the internal distribution of the input scene, which necessitates our key designs w.r.t. the scene representation and network architecture. Unlike popular multi-layer perceptrons (MLP)-based architectures, we particularly employ convolutional generators and discriminators, which inherently possess spatial locality bias, to operate over voxelized volumes for learning the internal distribution over a plethora of overlapping regions. On the other hand, localizing the adversarial generators and discriminators over confined areas with limited receptive fields easily leads to highly implausible geometric structures in the spatial. Our remedy is to use spatial inductive bias and joint discrimination on geometric clues in the form of 2D depth maps. This strategy is effective in improving spatial arrangement while incurring negligible additional computational cost. Experimental results demonstrate the ability of SinGRAV in generating plausible and diverse variations from a single scene, the merits of SinGRAV over state-of-the-art generative neural scene models, and the versatility of SinGRAV by its use in a variety of applications. Code and data will be released to facilitate further research.展开更多
With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration ...With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration unlocks the value of data and computational power,presenting significant opportunities for large-scale 3D scene modeling and XR presentation.In this paper,we explore the perspectives and highlight new challenges in 3D scene modeling and XR presentation based on point cloud within the cloud-edge-client integrated architecture.We also propose a novel cloud-edge-client integrated technology framework and a demonstration of municipal governance application to address these challenges.展开更多
Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must...Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.展开更多
In this paper, we present a framework for the generation and control of an Internet-based 3-dimensional game virtual environment that allows a character to navigate through the environment. Our framework includes 3-di...In this paper, we present a framework for the generation and control of an Internet-based 3-dimensional game virtual environment that allows a character to navigate through the environment. Our framework includes 3-dimensional terrain mesh data processing, a map editor, scene processing, collision processing, and walkthrough control. We also define an environment-specific semantic information editor, which can be applied using specific location obtained from the real world. Users can insert text information related to the characters real position in the real world during navigation in the game virtual environment.展开更多
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金supported by the National Natural Science Foundation of China,with Fund Numbers 62272478,62102451the National Defense Science and Technology Independent Research Project(Intelligent Information Hiding Technology and Its Applications in a Certain Field)and Science and Technology Innovation Team Innovative Research Project Research on Key Technologies for Intelligent Information Hiding”with Fund Number ZZKY20222102.
文摘As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection.
文摘In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.
基金Supported by National Natural Science Foundation of China(61872024)National Key R&D Program of China under Grant(2018YFB2100603).
文摘Background In this study,we propose a novel 3D scene graph prediction approach for scene understanding from point clouds.Methods It can automatically organize the entities of a scene in a graph,where objects are nodes and their relationships are modeled as edges.More specifically,we employ the DGCNN to capture the features of objects and their relationships in the scene.A Graph Attention Network(GAT)is introduced to exploit latent features obtained from the initial estimation to further refine the object arrangement in the graph structure.A one loss function modified from cross entropy with a variable weight is proposed to solve the multi-category problem in the prediction of object and predicate.Results Experiments reveal that the proposed approach performs favorably against the state-of-the-art methods in terms of predicate classification and relationship prediction and achieves comparable performance on object classification prediction.Conclusions The 3D scene graph prediction approach can form an abstract description of the scene space from point clouds.
基金FundedbytheopenresearchfundprogramofLIESMARS (No .0 1 0 30 2 )
文摘In order to understand the 3D landscape with many h igh buildings in a city, the 2D GIS has to be extended to 3D GIS. The further de velopment of CyberCity has to include various applications of 3D scenes from the outdoor scenes to the indoor ones. In thispaper, some key techniques, such as data management method and dynamicalvisualization method for the outdoor and the indoor scenes, are discussed.The indoor scene is compared with the outdoor one. The idea of integratedrepresentation of the outdoor and the indoor scenes in CyberCity GIS is discusse d.
文摘The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
基金supported by the National Natural Science Foundation of China(62322210)Beijing Municipal Natural Science Foundation for Distinguished Young Scholars(JQ21013)+1 种基金Beijing Municipal Science and Technology Commission(Z231100005923031)2023 Tencent AI Lab Rhino-Bird Focused Research Program.
文摘The emergence of 3D Gaussian splatting(3DGS)has greatly accelerated rendering in novel view synthesis.Unlike neural implicit representations like neural radiance fields(NeRFs)that represent a 3D scene with position and viewpoint-conditioned neural networks,3D Gaussian splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images.Apart from fast rendering,the explicit representation of 3D Gaussian splatting also facilitates downstream tasks like dynamic reconstruction,geometry editing,and physical simulation.Considering the rapid changes and growing number of works in this field,we present a literature review of recent 3D Gaussian splatting methods,which can be roughly classified by functionality into 3D reconstruction,3D editing,and other downstream applications.Traditional point-based rendering methods and the rendering formulation of 3D Gaussian splatting are also covered to aid understanding of this technique.This survey aims to help beginners to quickly get started in this field and to provide experienced researchers with a comprehensive overview,aiming to stimulate future development of the 3D Gaussian splatting representation.
基金funding from the Autonomous Region of Sardinia under project XDATA.Eva Almansa,Armando Sanchez,Giorgio Vassena,and Enrico Gobbetti received funding from the European Union's H2020 research and innovation programme under grant 813170(EVOCATION).
文摘We introduce a novel end-to-end deeplearning solution for rapidly estimating a dense spherical depth map of an indoor environment.Our input is a single equirectangular image registered with a sparse depth map,as provided by a variety of common capture setups.Depth is inferred by an efficient and lightweight single-branch network,which employs a dynamic gating system to process together dense visual data and sparse geometric data.We exploit the characteristics of typical man-made environments to efficiently compress multiresolution features and find short-and long-range relations among scene parts.Furthermore,we introduce a new augmentation strategy to make the model robust to different types of sparsity,including those generated by various structured light sensors and LiDAR setups.The experimental results demonstrate that our method provides interactive performance and outperforms stateof-the-art solutions in computational efficiency,adaptivity to variable depth sparsity patterns,and prediction accuracy for challenging indoor data,even when trained solely on synthetic data without any fine tuning.
基金supported by the International(Regional)Cooperation and Exchange Program of National Natural Science Foundation of China under Grant No.62161146002the Shenzhen Collaborative Innovation Program under Grant No.CJGJZD2021048092601003.
文摘We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of many object-centric scenes. Inspired by SinGAN, we also learn the internal distribution of the input scene, which necessitates our key designs w.r.t. the scene representation and network architecture. Unlike popular multi-layer perceptrons (MLP)-based architectures, we particularly employ convolutional generators and discriminators, which inherently possess spatial locality bias, to operate over voxelized volumes for learning the internal distribution over a plethora of overlapping regions. On the other hand, localizing the adversarial generators and discriminators over confined areas with limited receptive fields easily leads to highly implausible geometric structures in the spatial. Our remedy is to use spatial inductive bias and joint discrimination on geometric clues in the form of 2D depth maps. This strategy is effective in improving spatial arrangement while incurring negligible additional computational cost. Experimental results demonstrate the ability of SinGRAV in generating plausible and diverse variations from a single scene, the merits of SinGRAV over state-of-the-art generative neural scene models, and the versatility of SinGRAV by its use in a variety of applications. Code and data will be released to facilitate further research.
基金the National Natural Science Foundation of China(U22B2034)the Fundamental Research Funds for the Central Universities(226-2022-00064).
文摘With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration unlocks the value of data and computational power,presenting significant opportunities for large-scale 3D scene modeling and XR presentation.In this paper,we explore the perspectives and highlight new challenges in 3D scene modeling and XR presentation based on point cloud within the cloud-edge-client integrated architecture.We also propose a novel cloud-edge-client integrated technology framework and a demonstration of municipal governance application to address these challenges.
基金supported by the Key Program of the National Natural Science Foundation of China[grant no 41930104].
文摘Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.
文摘In this paper, we present a framework for the generation and control of an Internet-based 3-dimensional game virtual environment that allows a character to navigate through the environment. Our framework includes 3-dimensional terrain mesh data processing, a map editor, scene processing, collision processing, and walkthrough control. We also define an environment-specific semantic information editor, which can be applied using specific location obtained from the real world. Users can insert text information related to the characters real position in the real world during navigation in the game virtual environment.