Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts ...Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.展开更多
Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolati...Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolation (PSPI) algorithm is a useful tool to directly solve a wave equation and the results have natural properties of the wave equation. Amplitude and phase characteristics, in particular, are better preserved. The PSPI algorithm is widely used in hydrocarbon exploration because of its simplicity, efficiency, and reduced efforts for computation. However, meaningful depth image of 3D subsurface requires parallel computing to handle heavy computing time and great amount of input data. We implemented a parallelized version of 3D PSPI for prestack depth migration using Open-Multi-Processing (Open MP) library. We verified its performance through applications to 3D SEG/EAGE salt model with a small scale Linux cluster. Phase-shift was performed in the vertical and horizontal directions, respectively, and then interpolated at each node. This gave a single image gather according to shot gather. After summation of each single image gather, we got a 3D stacked image in the depth domain. The numerical model example shows good agree- ment with the original geological model.展开更多
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
Background Depth sensor is an essential element in virtual and augmented reality devices to digitalize users'environment in real time.The current popular technologies include the stereo,structured light,and Time-o...Background Depth sensor is an essential element in virtual and augmented reality devices to digitalize users'environment in real time.The current popular technologies include the stereo,structured light,and Time-of-Flight(ToF).The stereo and structured light method require a baseline separation between multiple sensors for depth sensing,and both suffer from a limited measurement range.The ToF depth sensors have the largest depth range but the lowest depth map resolution.To overcome these problems,we propose a co-axial depth map sensor which is potentially more compact and cost-effective than conventional structured light depth cameras.Meanwhile,it can extend the depth range while maintaining a high depth map resolution.Also,it provides a high-resolution 2 D image along with the 3 D depth map.Methods This depth sensor is constructed with a projection path and an imaging path.Those two paths are combined by a beamsplitter for a co-axial design.In the projection path,a cylindrical lens is inserted to add extra power in one direction which creates an astigmatic pattern.For depth measurement,the astigmatic pattern is projected onto the test scene,and then the depth information can be calculated from the contrast change of the reflected pattern image in two orthogonal directions.To extend the depth measurement range,we use an electronically focus tunable lens at the system stop and tune the power to implement an extended depth range without compromising depth resolution.Results In the depth measurement simulation,we project a resolution target onto a white screen which is moving along the optical axis and then tune the focus tunable lens power for three depth measurement subranges,namely,near,middle and far.In each sub-range,as the test screen moves away from the depth sensor,the horizontal contrast keeps increasing while the vertical contrast keeps decreasing in the reflected image.Therefore,the depth information can be obtained by computing the contrast ratio between features in orthogonal directions.Conclusions The proposed depth map sensor could implement depth measurement for an extended depth range with a co-axial design.展开更多
Depth discontinuity edge affects the visual quality of synthesized images in 3D image warping.However,it suffers from accuracy degradation when up-sampled from low-resolution depth maps,especially at large scaling fac...Depth discontinuity edge affects the visual quality of synthesized images in 3D image warping.However,it suffers from accuracy degradation when up-sampled from low-resolution depth maps,especially at large scaling factors.To preserve the accuracy of depth discontinuity,a novel joint bilateral depth super-resolution with intensity guidance method is proposed.Particularly,the fast local intensity classification is exploited to estimate depth coefficients in joint bilateral up-sampling for depth maps,so as to eliminate depth discontinuity edge misalignment.Additionally,the proposed method is accelerated on graphic processing units(GPUs)to meet the requirement of realtime application.Experiments demonstrate that our method can preserve the accuracy of depth discontinuity edges after super resolution,leveraging the visual quality of synthesized image in 3D image warping.展开更多
Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve c...Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve conventional arthroscopic surgeries,as a full 3D semantic representation of the surgical site can directly improve surgeons’ability.It also brings the possibility of intraoperative image registration with preoperative clinical records for the development of semi-autonomous,and fully autonomous platforms.This study aimed to present a novel monocular depth prediction model to infer depth maps from a single-color arthroscopic video frame.Methods We applied a novel technique that provides the ability to combine both supervised and self-supervised loss terms and thus eliminate the drawback of each technique.It enabled the estimation of edge-preserving depth maps from a single untextured arthroscopic frame.The proposed image acquisition technique projected artificial textures on the surface to improve the quality of disparity maps from stereo images.Moreover,following the integration of the attention-ware multi-scale feature extraction technique along with scene global contextual constraints and multiscale depth fusion,the model could predict reliable and accurate tissue depth of the surgical sites that complies with scene geometry.Results A total of 4,128 stereo frames from a knee phantom were used to train a network,and during the pre-trained stage,the network learned disparity maps from the stereo images.The fine-tuned training phase uses 12,695 knee arthroscopic stereo frames from cadaver experiments along with their corresponding coarse disparity maps obtained from the stereo matching technique.In a supervised fashion,the network learns the left image to the disparity map transformation process,whereas the self-supervised loss term refines the coarse depth map by minimizing reprojection,gradients,and structural dissimilarity loss.Together,our method produces high-quality 3D maps with minimum re-projection loss that are 0.0004132(structural similarity index),0.00036120156(L1 error distance)and 6.591908×10^(−5)(L1 gradient error distance).Conclusion Machine learning techniques for monocular depth prediction is studied to infer accurate depth maps from a single-color arthroscopic video frame.Moreover,the study integrates segmentation model hence,3D segmented maps are inferred that provides extended perception ability and tissue awareness.展开更多
Regeneration of severe bone defects remains an enormous challenge in clinic.Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle.Conch,an interesting cre...Regeneration of severe bone defects remains an enormous challenge in clinic.Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle.Conch,an interesting creature widely spreading in ocean,has tough spiral shell that can continuously grow along the spiral direction.Herein,inspired by the physiological features of conches,a conch-like(CL)scaffold based onβ-TCP bioceramic material was successfully prepared for guiding directional bone growth via digital light processing(DLP)-based 3D printing.Benefiting from the spiral structure,the CL scaffolds significantly improved cell adhesion,proliferation and osteogenic differentiation in vitro compared to the conventional 3D scaffolds.Particularly,the spiral structure in the scaffolds could efficiently induce cells to migrate from the bottom to the top of the scaffolds,which was like“cells climbing stairs”.Furthermore,the capability of guiding directional bone growth for the CL scaffolds was demonstrated by a special half-embedded femoral defects model in rabbits.The new bone tissue could consecutively grow into the protruded part of the scaffolds along the spiral cavities.This work provides a promising strategy to construct biomimetic biomaterials for guiding directional bone tissue growth,which offers a new treatment concept for severe bone defects,and even limb regeneration.展开更多
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose...Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.展开更多
This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD...This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD camera with a nanosecond-sealed gated intensifier is used as an image sensor; subsequently two high bit-depth gate images with specific range-intensity profiles are obtained to establish the gray depth map and finally the gray depth map is encoded by an equidensity pseudocolor. With this method, a color depth map is generated with higher range resolution. In our experimental work, the range resolution of the depth map is improved by a factor of 1.67.展开更多
针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出...针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。展开更多
Reconstructing 3D models for single objects with complex backgrounds has wide applications like 3D printing,AR/VR,and so on.It is necessary to consider the tradeoff between capturing data at low cost and getting high-...Reconstructing 3D models for single objects with complex backgrounds has wide applications like 3D printing,AR/VR,and so on.It is necessary to consider the tradeoff between capturing data at low cost and getting high-quality reconstruction results.In this work,we propose a voxel-based modeling pipeline with sparse RGB-D images to effectively and efficiently reconstruct a single real object without the geometrical post-processing operation on background removal.First,referring to the idea of VisualHull,useless and inconsistent voxels of a targeted object are clipped.It helps focus on the target object and rectify the voxel projection information.Second,a modified TSDF calculation and voxel filling operations are proposed to alleviate the problem of depth missing in the depth images.They can improve TSDF value completeness for voxels on the surface of the object.After the mesh is generated by the MarchingCube,texture mapping is optimized with view selection,color optimization,and camera parameters fine-tuning.Experiments on Kinect capturing dataset,TUM public dataset,and virtual environment dataset validate the effectiveness and flexibility of our proposed pipeline.展开更多
This paper presents the result of an investigation into the utility of the Structure Sensor developed by Occipital Inc.and accuracy of its output for 3D surveying of interiors of buildings in relation to Surveying(Cad...This paper presents the result of an investigation into the utility of the Structure Sensor developed by Occipital Inc.and accuracy of its output for 3D surveying of interiors of buildings in relation to Surveying(Cadastral Survey)Regulation 2005 in Victoria,Australia.The paper investigates data acquisition issues,defines guidelines to obtain the best reconstruction result,and evaluates the result against the requirements set by the Regulation.The findings suggest a mixed result.The sensor delivers more accurate outputs for the smaller room sizes.Also,the accuracy does not meet the requirements,but it was found to be close to what is expected in the Regulation.Finally,the paper argues that the device is user-friendly enough to be used by non-experts for crowdsourcing indoor information and,the accuracy of its output can meet the needs of other domains such as indoor navigation and public safety.展开更多
The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of ...The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of data line, the four-way splitting schemes and their splitting errors for the finite-difference (FD) method and the hybrid method are investigated. The wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is stable unconditionally. Numerical analysis of splitting errors show that the two-way FD migration have visible numerical anisotropic errors, and that four-way FD migration has much less splitting errors than two-way FD migration has. For the hybrid method, the differences of numerical anisotropic errors between two-way scheme and four-way scheme are small in the case of lower lateral velocity variations. The schemes presented in this paper can be used in 3D post-stack or prestack depth migration. Two numerical calculations of 3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack depth migration for an impulse response, which shows that the anisotropic errors can be eliminated effectively in the cases of constant and variable velocity variations. The other is the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-way hybrid splitting scheme, which presents good imaging results. The Message Passing Interface (MPI) programme based on shot number is adopted.展开更多
In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical s...In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60832003)Key Laboratory of Advanced Display and System Application(Shanghai University),Ministry of Education,China(Grant No.P200902)the Key Project of Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.
文摘Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolation (PSPI) algorithm is a useful tool to directly solve a wave equation and the results have natural properties of the wave equation. Amplitude and phase characteristics, in particular, are better preserved. The PSPI algorithm is widely used in hydrocarbon exploration because of its simplicity, efficiency, and reduced efforts for computation. However, meaningful depth image of 3D subsurface requires parallel computing to handle heavy computing time and great amount of input data. We implemented a parallelized version of 3D PSPI for prestack depth migration using Open-Multi-Processing (Open MP) library. We verified its performance through applications to 3D SEG/EAGE salt model with a small scale Linux cluster. Phase-shift was performed in the vertical and horizontal directions, respectively, and then interpolated at each node. This gave a single image gather according to shot gather. After summation of each single image gather, we got a 3D stacked image in the depth domain. The numerical model example shows good agree- ment with the original geological model.
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
文摘Background Depth sensor is an essential element in virtual and augmented reality devices to digitalize users'environment in real time.The current popular technologies include the stereo,structured light,and Time-of-Flight(ToF).The stereo and structured light method require a baseline separation between multiple sensors for depth sensing,and both suffer from a limited measurement range.The ToF depth sensors have the largest depth range but the lowest depth map resolution.To overcome these problems,we propose a co-axial depth map sensor which is potentially more compact and cost-effective than conventional structured light depth cameras.Meanwhile,it can extend the depth range while maintaining a high depth map resolution.Also,it provides a high-resolution 2 D image along with the 3 D depth map.Methods This depth sensor is constructed with a projection path and an imaging path.Those two paths are combined by a beamsplitter for a co-axial design.In the projection path,a cylindrical lens is inserted to add extra power in one direction which creates an astigmatic pattern.For depth measurement,the astigmatic pattern is projected onto the test scene,and then the depth information can be calculated from the contrast change of the reflected pattern image in two orthogonal directions.To extend the depth measurement range,we use an electronically focus tunable lens at the system stop and tune the power to implement an extended depth range without compromising depth resolution.Results In the depth measurement simulation,we project a resolution target onto a white screen which is moving along the optical axis and then tune the focus tunable lens power for three depth measurement subranges,namely,near,middle and far.In each sub-range,as the test screen moves away from the depth sensor,the horizontal contrast keeps increasing while the vertical contrast keeps decreasing in the reflected image.Therefore,the depth information can be obtained by computing the contrast ratio between features in orthogonal directions.Conclusions The proposed depth map sensor could implement depth measurement for an extended depth range with a co-axial design.
基金Supported by the National Natural Science Foundation of China(61572058)
文摘Depth discontinuity edge affects the visual quality of synthesized images in 3D image warping.However,it suffers from accuracy degradation when up-sampled from low-resolution depth maps,especially at large scaling factors.To preserve the accuracy of depth discontinuity,a novel joint bilateral depth super-resolution with intensity guidance method is proposed.Particularly,the fast local intensity classification is exploited to estimate depth coefficients in joint bilateral up-sampling for depth maps,so as to eliminate depth discontinuity edge misalignment.Additionally,the proposed method is accelerated on graphic processing units(GPUs)to meet the requirement of realtime application.Experiments demonstrate that our method can preserve the accuracy of depth discontinuity edges after super resolution,leveraging the visual quality of synthesized image in 3D image warping.
基金supported by the Australian Indian Strategic Research Fund(Project AISRF53820).
文摘Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve conventional arthroscopic surgeries,as a full 3D semantic representation of the surgical site can directly improve surgeons’ability.It also brings the possibility of intraoperative image registration with preoperative clinical records for the development of semi-autonomous,and fully autonomous platforms.This study aimed to present a novel monocular depth prediction model to infer depth maps from a single-color arthroscopic video frame.Methods We applied a novel technique that provides the ability to combine both supervised and self-supervised loss terms and thus eliminate the drawback of each technique.It enabled the estimation of edge-preserving depth maps from a single untextured arthroscopic frame.The proposed image acquisition technique projected artificial textures on the surface to improve the quality of disparity maps from stereo images.Moreover,following the integration of the attention-ware multi-scale feature extraction technique along with scene global contextual constraints and multiscale depth fusion,the model could predict reliable and accurate tissue depth of the surgical sites that complies with scene geometry.Results A total of 4,128 stereo frames from a knee phantom were used to train a network,and during the pre-trained stage,the network learned disparity maps from the stereo images.The fine-tuned training phase uses 12,695 knee arthroscopic stereo frames from cadaver experiments along with their corresponding coarse disparity maps obtained from the stereo matching technique.In a supervised fashion,the network learns the left image to the disparity map transformation process,whereas the self-supervised loss term refines the coarse depth map by minimizing reprojection,gradients,and structural dissimilarity loss.Together,our method produces high-quality 3D maps with minimum re-projection loss that are 0.0004132(structural similarity index),0.00036120156(L1 error distance)and 6.591908×10^(−5)(L1 gradient error distance).Conclusion Machine learning techniques for monocular depth prediction is studied to infer accurate depth maps from a single-color arthroscopic video frame.Moreover,the study integrates segmentation model hence,3D segmented maps are inferred that provides extended perception ability and tissue awareness.
基金This work was supported by the National Key Research and Development Program of China(grant number 2021YFB3800800)the Natural Science Foundation of China(grant numbers 32225028,32130062)+1 种基金Science and Technology Commission of Shanghai Municipality(grant number 21DZ1205600)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(grant number JCYJ-SHFY-2022-003).
文摘Regeneration of severe bone defects remains an enormous challenge in clinic.Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle.Conch,an interesting creature widely spreading in ocean,has tough spiral shell that can continuously grow along the spiral direction.Herein,inspired by the physiological features of conches,a conch-like(CL)scaffold based onβ-TCP bioceramic material was successfully prepared for guiding directional bone growth via digital light processing(DLP)-based 3D printing.Benefiting from the spiral structure,the CL scaffolds significantly improved cell adhesion,proliferation and osteogenic differentiation in vitro compared to the conventional 3D scaffolds.Particularly,the spiral structure in the scaffolds could efficiently induce cells to migrate from the bottom to the top of the scaffolds,which was like“cells climbing stairs”.Furthermore,the capability of guiding directional bone growth for the CL scaffolds was demonstrated by a special half-embedded femoral defects model in rabbits.The new bone tissue could consecutively grow into the protruded part of the scaffolds along the spiral cavities.This work provides a promising strategy to construct biomimetic biomaterials for guiding directional bone tissue growth,which offers a new treatment concept for severe bone defects,and even limb regeneration.
基金supported by the National Natural Science Foundation of China(61773272,61976191)the Six Talent Peaks Project of Jiangsu Province,China(XYDXX-053)Suzhou Research Project of Technical Innovation,Jiangsu,China(SYG201711)。
文摘Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.
基金supported by the National Natural Science Foundation of China under Grant Nos.61205019 and 61475150
文摘This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD camera with a nanosecond-sealed gated intensifier is used as an image sensor; subsequently two high bit-depth gate images with specific range-intensity profiles are obtained to establish the gray depth map and finally the gray depth map is encoded by an equidensity pseudocolor. With this method, a color depth map is generated with higher range resolution. In our experimental work, the range resolution of the depth map is improved by a factor of 1.67.
文摘针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。
基金supported by the Key Technological Innovation Projects of Hubei Province,China(No.2018AAA062)the National Natural Science Foundation of China(No.61972298)+1 种基金the Ministry of Education of Humanities and Social Sciences Project,China(No.17YJC760124)the Scientific Research Project of Department of Education of Hubei Province,China(No.B2021278).
文摘Reconstructing 3D models for single objects with complex backgrounds has wide applications like 3D printing,AR/VR,and so on.It is necessary to consider the tradeoff between capturing data at low cost and getting high-quality reconstruction results.In this work,we propose a voxel-based modeling pipeline with sparse RGB-D images to effectively and efficiently reconstruct a single real object without the geometrical post-processing operation on background removal.First,referring to the idea of VisualHull,useless and inconsistent voxels of a targeted object are clipped.It helps focus on the target object and rectify the voxel projection information.Second,a modified TSDF calculation and voxel filling operations are proposed to alleviate the problem of depth missing in the depth images.They can improve TSDF value completeness for voxels on the surface of the object.After the mesh is generated by the MarchingCube,texture mapping is optimized with view selection,color optimization,and camera parameters fine-tuning.Experiments on Kinect capturing dataset,TUM public dataset,and virtual environment dataset validate the effectiveness and flexibility of our proposed pipeline.
基金This work was supported by the University of Melbourne[grant number 501327].
文摘This paper presents the result of an investigation into the utility of the Structure Sensor developed by Occipital Inc.and accuracy of its output for 3D surveying of interiors of buildings in relation to Surveying(Cadastral Survey)Regulation 2005 in Victoria,Australia.The paper investigates data acquisition issues,defines guidelines to obtain the best reconstruction result,and evaluates the result against the requirements set by the Regulation.The findings suggest a mixed result.The sensor delivers more accurate outputs for the smaller room sizes.Also,the accuracy does not meet the requirements,but it was found to be close to what is expected in the Regulation.Finally,the paper argues that the device is user-friendly enough to be used by non-experts for crowdsourcing indoor information and,the accuracy of its output can meet the needs of other domains such as indoor navigation and public safety.
基金This research is supported by the Major State Basic Research Program of Peoples's Republic of China (No.C1999032803), the National Key Nature Science Foundation (No.40004003) and ICMSEC Institute Director Foundation.
文摘The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of data line, the four-way splitting schemes and their splitting errors for the finite-difference (FD) method and the hybrid method are investigated. The wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is stable unconditionally. Numerical analysis of splitting errors show that the two-way FD migration have visible numerical anisotropic errors, and that four-way FD migration has much less splitting errors than two-way FD migration has. For the hybrid method, the differences of numerical anisotropic errors between two-way scheme and four-way scheme are small in the case of lower lateral velocity variations. The schemes presented in this paper can be used in 3D post-stack or prestack depth migration. Two numerical calculations of 3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack depth migration for an impulse response, which shows that the anisotropic errors can be eliminated effectively in the cases of constant and variable velocity variations. The other is the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-way hybrid splitting scheme, which presents good imaging results. The Message Passing Interface (MPI) programme based on shot number is adopted.
基金This work was supported by Major State Basic Research Program of Peoples's Republic of China(No.G1999032800)Major Project(No.49894190)the National Natural Science Foundation of China(Grant No.40004003).All numerical experiments were completed on the PC-cluster in the State Key Lab of Scientific/Engineering Computing.
文摘In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.