In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ...In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
针对大规模MIMO系统中存在的导频污染问题,结合目前研究的基于奇异值(SVD)分解的信道估计算法,在考虑到该算法中的协方差矩阵是用有限的样本数据代替真实数据必然存在偏差的问题,给出了一种联合ILSP(Iterative Least Square with Projec...针对大规模MIMO系统中存在的导频污染问题,结合目前研究的基于奇异值(SVD)分解的信道估计算法,在考虑到该算法中的协方差矩阵是用有限的样本数据代替真实数据必然存在偏差的问题,给出了一种联合ILSP(Iterative Least Square with Projection)的基于SVD的半盲信道估计算法。仿真结果表明改进后的信道估计算法能够有效减小已有算法中存在的偏差问题,提高信道估计精确度,有效减轻导频污染给大规模MIMO系统带来的影响,从而实现大规模MIMO系统性能的提升。展开更多
在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法...在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。展开更多
基金The Natural Science Foundation of Henan Province(No.232300421097)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT019,24HASTIT038)+2 种基金the China Postdoctoral Science Foundation(No.2023T160596,2023M733251)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)the Song Shan Laboratory Foundation(No.YYJC022022003)。
文摘In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。
文摘针对大规模MIMO系统中存在的导频污染问题,结合目前研究的基于奇异值(SVD)分解的信道估计算法,在考虑到该算法中的协方差矩阵是用有限的样本数据代替真实数据必然存在偏差的问题,给出了一种联合ILSP(Iterative Least Square with Projection)的基于SVD的半盲信道估计算法。仿真结果表明改进后的信道估计算法能够有效减小已有算法中存在的偏差问题,提高信道估计精确度,有效减轻导频污染给大规模MIMO系统带来的影响,从而实现大规模MIMO系统性能的提升。
文摘在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。