The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a rel...The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.展开更多
Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-b...Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.展开更多
Mankind holds creation as a special human property contributing knowledge and culture.Both design and research belong to creative activities.While research focuses on new findings following the rule of truth,design pa...Mankind holds creation as a special human property contributing knowledge and culture.Both design and research belong to creative activities.While research focuses on new findings following the rule of truth,design pays more attention to new designed works following the rule of beauty.Three philosophical principles for design are suggested as ABC principles:A.Design approaches beauty;B.Design balances science and art;C.Design concerns culture.Three types of design are practically discussed,including 2D art or symbol design,3D engineering or product design,and nD program or form design.展开更多
Recently, virtual reality and interactive somatosensory technology has become one of the hot issues in the research of computer applications. Leap Motion is a new type of interactive somatosensory devices which bring ...Recently, virtual reality and interactive somatosensory technology has become one of the hot issues in the research of computer applications. Leap Motion is a new type of interactive somatosensory devices which bring users senses of immersion efficiently. This paper studies a interactive somatosensory game model based on Leap Motion and implemented with Unity. Based on the two core technology philosophy of Leap Motion, i.e., virtual reality technology and body sense of interactive technology, the design implementation of each sub module of the system and Leap Motion game algorithm are thoroughly addressed. This paper has certain significance for future application of Leap Motion in film, television, and interactive games.展开更多
Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a be...Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First,we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional(3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.展开更多
As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training ...As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training and so on. Its trend is gradually changed from client to web, and so many people start to research the 3D graphics engine technology on the web. WebGL and HTML5 rise in recent years and WebGL solves two problems of interactive 3D application on the web perfectly. Firstly, it implements the interactive 3D web application by JavaScript without any browser plug-in components. Secondly, it makes graphics rendering using the underlying graphics hardware, which is united, standard and cross-platform OpenGL interface. However, it is very difficult for 3D application web programmer to understand multifarious details. Therefore, a 3D engine based on WebGL comes into being. The paper consults the existing 3D engine design idea, architecture and implementation experience, and designs a 3D graphics engine based on WebGL and Typescript.展开更多
基金Supported by the National Natural Science Foundation of China(10572008)the Natural Science Foundation of Beijing(3063019)Doctor Foundation of Yanshan University(B245)
文摘The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.
文摘Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.
文摘Mankind holds creation as a special human property contributing knowledge and culture.Both design and research belong to creative activities.While research focuses on new findings following the rule of truth,design pays more attention to new designed works following the rule of beauty.Three philosophical principles for design are suggested as ABC principles:A.Design approaches beauty;B.Design balances science and art;C.Design concerns culture.Three types of design are practically discussed,including 2D art or symbol design,3D engineering or product design,and nD program or form design.
基金Supported by Gansu Science and Technology Major Project(1302FKDA036)
文摘Recently, virtual reality and interactive somatosensory technology has become one of the hot issues in the research of computer applications. Leap Motion is a new type of interactive somatosensory devices which bring users senses of immersion efficiently. This paper studies a interactive somatosensory game model based on Leap Motion and implemented with Unity. Based on the two core technology philosophy of Leap Motion, i.e., virtual reality technology and body sense of interactive technology, the design implementation of each sub module of the system and Leap Motion game algorithm are thoroughly addressed. This paper has certain significance for future application of Leap Motion in film, television, and interactive games.
基金supported by the Research Project Funding of National University of Defense Technology of China (No.ZK19-33)the National Postdoctoral International Exchange Program Funding for Incoming Postdoctoral Students (Postdoctoral No.48127)+1 种基金the Science and Technology Innovation Program of Hunan Province (No.2020RC2036)the National Natural Science Foundation of China (Nos.52105039 and 52175069)。
文摘Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First,we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional(3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
文摘As the progress of 3D rendering technology and the changes of market demand, the 3D application has been widely used and reached as far as education, entertainment, medical treatment, city planning, military training and so on. Its trend is gradually changed from client to web, and so many people start to research the 3D graphics engine technology on the web. WebGL and HTML5 rise in recent years and WebGL solves two problems of interactive 3D application on the web perfectly. Firstly, it implements the interactive 3D web application by JavaScript without any browser plug-in components. Secondly, it makes graphics rendering using the underlying graphics hardware, which is united, standard and cross-platform OpenGL interface. However, it is very difficult for 3D application web programmer to understand multifarious details. Therefore, a 3D engine based on WebGL comes into being. The paper consults the existing 3D engine design idea, architecture and implementation experience, and designs a 3D graphics engine based on WebGL and Typescript.