The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarki...Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarking algorithms to achieve suffcient robustness for the actual application scenarios.In this paper,we propose the first deep learning-based 3D mesh watermarking network,which can provide a more general framework for this problem.In detail,we propose an end-to-end network,consisting of a watermark embedding sub-network,a watermark extracting sub-network and attack layers.We employ the topology-agnostic graph convolutional network(GCN)as the basic convolution operation,therefore our network is not limited by registered meshes(which share a fixed topology).For the specific application scenario,we can integrate the corresponding attack layers to guarantee adaptive robustness against possible attacks.To ensure the visual quality of watermarked 3D meshes,we design the curvature consistency loss function to constrain the local geometry smoothness of watermarked meshes.Experimental results show that the proposed method can achieve more universal robustness while guaranteeing comparable visual quality.展开更多
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.
基金supported in part by the Natural Science Foundation of China underGrant 62072421,62002334,62102386,62121002 and U20B2047Anhui Science Foundation of China under Grant 2008085QF296+1 种基金Exploration Fund Project of University of Science and Technology of China under Grant YD3480002001by Fundamental Research Funds for the Central Universities WK5290000001.
文摘Robust 3D mesh watermarking is a traditional research topic in computer graphics,which provides an efficient solution to the copyright protection for 3D meshes.Traditionally,researchers need manually design watermarking algorithms to achieve suffcient robustness for the actual application scenarios.In this paper,we propose the first deep learning-based 3D mesh watermarking network,which can provide a more general framework for this problem.In detail,we propose an end-to-end network,consisting of a watermark embedding sub-network,a watermark extracting sub-network and attack layers.We employ the topology-agnostic graph convolutional network(GCN)as the basic convolution operation,therefore our network is not limited by registered meshes(which share a fixed topology).For the specific application scenario,we can integrate the corresponding attack layers to guarantee adaptive robustness against possible attacks.To ensure the visual quality of watermarked 3D meshes,we design the curvature consistency loss function to constrain the local geometry smoothness of watermarked meshes.Experimental results show that the proposed method can achieve more universal robustness while guaranteeing comparable visual quality.